Your Input: | |||||
purA | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa) | ||||
tilS | tRNA lysidine(34) synthetase TilS; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. (395 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (418 aa) | ||||
proS | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (618 aa) | ||||
cysS | cysteine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (447 aa) | ||||
citC | [citrate (pro-3S)-lyase] ligase; Acetylation of prosthetic group (2-(5''-phosphoribosyl)-3'- dephosphocoenzyme-A) of the gamma subunit of citrate lyase. (348 aa) | ||||
pyrG | CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (535 aa) | ||||
APD32830.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0374 family. (177 aa) | ||||
valS | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (883 aa) | ||||
APD31406.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
asnA | Aspartate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
murD | UDP-N-acetylmuramoyl-L-alanine--D-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (452 aa) | ||||
ileS | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (930 aa) | ||||
ddl | D-alanine--D-alanine ligase A; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (348 aa) | ||||
murF | UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (459 aa) | ||||
alaS | alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (872 aa) | ||||
birA | biotin--[acetyl-CoA-carboxylase] ligase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. (311 aa) | ||||
APD31560.1 | Long-chain fatty acid--CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
dltA | D-alanine--poly(phosphoribitol) ligase subunit 1; Catalyzes the first step in the D-alanylation of lipoteichoic acid (LTA), the activation of D-alanine and its transfer onto the D- alanyl carrier protein (Dcp) DltC. In an ATP-dependent two-step reaction, forms a high energy D-alanyl-AMP intermediate, followed by transfer of the D-alanyl residue as a thiol ester to the phosphopantheinyl prosthetic group of the Dcp. D-alanylation of LTA plays an important role in modulating the properties of the cell wall in Gram-positive bacteria, influencing the net charge of the cell wall. Belongs to [...] (512 aa) | ||||
APD31642.1 | Lipoate--protein ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa) | ||||
APD31643.1 | Glutamine amidotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa) | ||||
APD31644.1 | UDP-N-acetylmuramyl peptide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (447 aa) | ||||
fhs | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (556 aa) | ||||
guaA | Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (520 aa) | ||||
APD31898.1 | Dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (419 aa) | ||||
pheT | phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (801 aa) | ||||
pheS | phenylalanine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (347 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (138 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (468 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (291 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (501 aa) | ||||
atpH | F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa) | ||||
atpF | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (237 aa) | ||||
APD32021.1 | F0F1 ATP synthase subunit C; Derived by automated computational analysis using gene prediction method: Protein Homology. (65 aa) | ||||
ligA | DNA ligase (NAD(+)) LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (652 aa) | ||||
asnS | asparagine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (448 aa) | ||||
lysS | lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (496 aa) | ||||
APD32106.1 | Dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (425 aa) | ||||
fhs-2 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (557 aa) | ||||
thrS | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (646 aa) | ||||
metG | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (667 aa) | ||||
murE | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2, 6-diaminopimelate ligase; Catalyzes the addition of L-lysine to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan; Belongs to the MurCDEF family. MurE subfamily. (481 aa) | ||||
murC | UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (443 aa) | ||||
tmcAL | Hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of elongator tRNA(Met), using acetate and ATP as substrates. First activates an acetate ion to form acetyladenylate (Ac- AMP) and then transfers the acetyl group to tRNA to form ac(4)C34. (368 aa) | ||||
nadE | NAD(+) synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source; Belongs to the NAD synthetase family. (274 aa) | ||||
APD32377.1 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (486 aa) | ||||
glyS | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (679 aa) | ||||
glyQ | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa) | ||||
serS | serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (425 aa) | ||||
accA | acetyl-CoA carboxylase carboxyl transferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (256 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (288 aa) | ||||
accC | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (454 aa) | ||||
APD32444.1 | acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (146 aa) | ||||
gatB | aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (479 aa) | ||||
gatA | aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (488 aa) | ||||
gatC | asparaginyl/glutamyl-tRNA amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (100 aa) | ||||
glnA | Type I glutamate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (448 aa) | ||||
argG | Argininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (399 aa) | ||||
gltX | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (481 aa) | ||||
APD32670.1 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (177 aa) | ||||
leuS | leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (833 aa) | ||||
argS | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (562 aa) | ||||
aspS | aspartate--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (582 aa) | ||||
hisS | histidine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (424 aa) | ||||
trpS | tryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (340 aa) |