Your Input: | |||||
metH | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1146 aa) | ||||
serA3 | D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (530 aa) | ||||
yitJ | Homocysteine methyltransferase; Catalyzes the formation of 5,10-methylenetetrahydrofolate from 5-methyltetrahydrofolate and S-adenosyl-L-homocysteine and methionine from S-adenosyl-L-methionine and L-homocysteine; expressed in B. subtilis under methionine starvation conditions; Derived by automated computational analysis using gene prediction method: Protein Homology. (628 aa) | ||||
ahcY | S-adenosyl-L-homocysteine hydrolase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine. (421 aa) | ||||
ykrV3 | Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
thrC | Threonine synthase; Catalyzes the formation of L-threonine from O-phospho-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (463 aa) | ||||
thrB | Serine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (322 aa) | ||||
hom | Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa) | ||||
metK | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (400 aa) | ||||
metE | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (772 aa) | ||||
mmuM | Converts homocysteine and S-adenosyl-methionine to methionine and S-adenosyl-homocysteine or S-methyl-methionine and homocysteine to two methionines; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa) | ||||
sdhA1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (299 aa) | ||||
sdhB1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (229 aa) | ||||
cysD | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa) | ||||
luxS | S-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (153 aa) | ||||
yebR | GAF domain-containing protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (159 aa) | ||||
ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (428 aa) | ||||
cysK3 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (307 aa) | ||||
metA | Homoserine O-succinyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (305 aa) | ||||
metC1 | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa) | ||||
metC3 | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (392 aa) | ||||
serC | MFS transporter; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (362 aa) | ||||
yxjG | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa) | ||||
cysM | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa) | ||||
yrhB | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (376 aa) |