Your Input: | |||||
maeA | Malic enzyme; oxaloacetate-decarboxylating; NAD-dependent; catalyzes the formation of pyruvate form malate; Derived by automated computational analysis using gene prediction method: Protein Homology. (566 aa) | ||||
AMW77851.1 | Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (508 aa) | ||||
AMW77854.1 | Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (713 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (406 aa) | ||||
AMW77869.1 | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (918 aa) | ||||
AMW77892.1 | 3-hydroxyisobutyrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (274 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (298 aa) | ||||
gltA | Citrate (Si)-synthase; Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cit [...] (425 aa) | ||||
AMW78245.1 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (132 aa) | ||||
AMW78246.1 | Succinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (121 aa) | ||||
AMW78247.1 | Fumarate reductase (quinol) flavoprotein subunit; Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (632 aa) | ||||
sdhB | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (236 aa) | ||||
AMW80335.1 | 2-oxoglutarate dehydrogenase E1 component; Derived by automated computational analysis using gene prediction method: Protein Homology. (945 aa) | ||||
AMW78249.1 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (404 aa) | ||||
AMW78250.1 | E3 component of 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (477 aa) | ||||
sucC | succinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa) | ||||
sucD | succinate--CoA ligase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (297 aa) | ||||
prpB | Methylisocitrate lyase; Catalyzes the formation of pyruvate and succinate from 2-methylisocitrate; frameshifted; internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
glcB | Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily. (720 aa) | ||||
AMW78609.1 | Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (480 aa) | ||||
AMW78725.1 | 3-hydroxyisobutyrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (289 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (124 aa) | ||||
fumC | Class II fumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa) | ||||
AMW78929.1 | acetyl-CoA carboxylase, biotin carboxyl carrier protein; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (139 aa) | ||||
AMW78930.1 | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (452 aa) | ||||
AMW78993.1 | Catalyzes the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate; also catalyzes the condensation of oxaloacetate with acetyl-CoA but with a lower specificity; Derived by automated computational analysis using gene prediction method: Protein Homology. (378 aa) | ||||
prpB-2 | Methylisocitrate lyase; Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2-methylisocitrate to yield pyruvate and succinate. Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (294 aa) | ||||
AMW79061.1 | Catalyzes the oxidation of acetaldehyde, benzaldehyde, propionaldehyde and other aldehydes; Derived by automated computational analysis using gene prediction method: Protein Homology. (503 aa) | ||||
AMW79088.1 | AMP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (557 aa) | ||||
AMW79089.1 | 3-hydroxyisobutyrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HIBADH-related family. (295 aa) | ||||
AMW79090.1 | Methylmalonate-semialdehyde dehydrogenase (acylating); Derived by automated computational analysis using gene prediction method: Protein Homology. (505 aa) | ||||
AMW79154.1 | Aconitate hydratase B; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (879 aa) | ||||
AMW79261.1 | Isocitrate dehydrogenase; NADP-specific, catalyzes the formation of 2-oxoglutarate from isocitrate or oxalosuccinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family. (743 aa) | ||||
AMW79350.1 | Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (759 aa) | ||||
AMW79485.1 | Isocitrate lyase; Catalyzes the first step in the glyoxalate cycle, which converts lipids to carbohydrates; Derived by automated computational analysis using gene prediction method: Protein Homology. (533 aa) | ||||
AMW79617.1 | 3-hydroxyisobutyrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa) | ||||
AMW80428.1 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (328 aa) | ||||
AMW80040.1 | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (505 aa) | ||||
AMW80100.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (396 aa) | ||||
acsA | Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (648 aa) | ||||
AMW80125.1 | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (660 aa) | ||||
aceE | Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (900 aa) |