STRINGSTRING
AMW77484.1 AMW77484.1 guaA guaA ppnP ppnP AMW77712.1 AMW77712.1 gmk gmk purU purU AMW77838.1 AMW77838.1 dut dut AMW78168.1 AMW78168.1 adk adk purN purN purM purM purL purL tmk tmk AMW78710.1 AMW78710.1 pyrG pyrG AMW79039.1 AMW79039.1 AMW79067.1 AMW79067.1 purT purT pyrF pyrF purH purH purD purD purF purF pyrD pyrD AMW79229.1 AMW79229.1 pyrB pyrB purA purA AMW79255.1 AMW79255.1 surE surE AMW79291.1 AMW79291.1 glyA glyA folD folD carA carA carB carB dcd dcd AMW79609.1 AMW79609.1 AMW79610.1 AMW79610.1 ndk ndk xpt xpt guaB guaB pyrE pyrE purC purC purK purK purE purE AMW80271.1 AMW80271.1 AMW80272.1 AMW80272.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AMW77484.1Pyrimidine utilization transport protein G; Derived by automated computational analysis using gene prediction method: Protein Homology. (437 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (522 aa)
ppnPHypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (107 aa)
AMW77712.1RelA/SpoT family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (702 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (206 aa)
purUFormyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (288 aa)
AMW77838.1Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (208 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (150 aa)
AMW78168.1Adenine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (180 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (219 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (210 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (356 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1276 aa)
tmkdTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (202 aa)
AMW78710.1Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (633 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
AMW79039.1Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (685 aa)
AMW79067.1GMP synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (402 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (230 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (524 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (512 aa)
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (334 aa)
AMW79229.1Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (411 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (343 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (439 aa)
AMW79255.1Adenosine deaminase; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism. (334 aa)
surE5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (259 aa)
AMW79291.1Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (462 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (282 aa)
carACarbamoyl-phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (380 aa)
carBCarbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (1077 aa)
dcdDeoxycytidine triphosphate deaminase; Catalyzes the deamination of dCTP to dUTP. (189 aa)
AMW79609.1Ribonucleotide-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (942 aa)
AMW79610.1Ribonucleotide-diphosphate reductase subunit beta; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (427 aa)
ndkNucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (143 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (191 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (216 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (373 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (170 aa)
AMW80271.1Guanine deaminase; Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia; Belongs to the metallo-dependent hydrolases superfamily. ATZ/TRZ family. (439 aa)
AMW80272.1Catalyzes the formation of inosine monophosphate from hypoxanthine and 5-phospho-alpha-D-ribose 1-diphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (175 aa)
Your Current Organism:
Acinetobacter sp. TGLY2
NCBI taxonomy Id: 1407071
Other names: A. sp. TGL-Y2, Acinetobacter sp. TGL-Y2
Server load: low (16%) [HD]