STRINGSTRING
atpF atpF atpB atpB atpE atpE atpC atpC atpD atpD atpG atpG atpA atpA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpFATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (171 aa)
atpBATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (241 aa)
atpEPutative F0F1-type ATPase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (69 aa)
atpCATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. (137 aa)
atpDMembrane-bound ATP synthase, F1 sector, beta-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (469 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (283 aa)
atpAF1 sector of membrane-bound ATP synthase, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa)
Your Current Organism:
Endomicrobium proavitum
NCBI taxonomy Id: 1408281
Other names: Candidatus Endomicrobium sp. Rsa215, DSM 29378, E. proavitum, Endomicrobium proavitum Zheng et al. 2018, JCM 30189, JCM 32103, strain Rsa215
Server load: low (38%) [HD]