STRINGSTRING
rplS rplS rpsP rpsP frr frr rpsB rpsB rpsI rpsI rpsF rpsF rpsR rpsR rplI rplI rplU rplU rpsO rpsO rpsU rpsU prfB_2 prfB_2 rplY rplY rpsG rpsG fusA fusA rplD rplD rplW rplW rpsS rpsS rplN rplN rplF rplF rplO rplO rpmJ rpmJ rpsM rpsM rplQ rplQ arfA arfA rpmB_2 rpmB_2 rpmG_2 rpmG_2 rpmI rpmI rplT rplT rpmF rpmF rpsT rpsT rplL rplL rplA rplA rpmE rpmE lepA lepA rpmG_3 rpmG_3 rpmB_3 rpmB_3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (115 aa)
rpsP30S ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (82 aa)
frrRibosome-recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
rpsB30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (241 aa)
rpsI30S ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (130 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (131 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (150 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpsU30S ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
prfB_2Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (310 aa)
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. (94 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (704 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (201 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa)
rpmJ50S ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rplQ50S ribosomal protein L17. (129 aa)
arfAAlternative ribosome-rescue factor A. (68 aa)
rpmB_250S ribosomal protein L28. (78 aa)
rpmG_250S ribosomal protein L33. (55 aa)
rpmI50S ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa)
rpmF50S ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (55 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (121 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (234 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (71 aa)
lepAElongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (598 aa)
rpmG_350S ribosomal protein L33. (55 aa)
rpmB_350S ribosomal protein L28. (78 aa)
Your Current Organism:
Serratia sp. DD3
NCBI taxonomy Id: 1410619
Other names: S. sp. DD3
Server load: low (18%) [HD]