Your Input: | |||||
leuS | leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (804 aa) | ||||
argS | arginyl-tRNA synthetase. (563 aa) | ||||
murC | UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (443 aa) | ||||
thrS | Threonyl-trna synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (653 aa) | ||||
tmcAL | Nucleotidyltransferase; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of elongator tRNA(Met), using acetate and ATP as substrates. First activates an acetate ion to form acetyladenylate (Ac- AMP) and then transfers the acetyl group to tRNA to form ac(4)C34. (383 aa) | ||||
pheS | Phenylalanyl-trna synthetase alpha chain; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (348 aa) | ||||
pheT | phenylalanyl-tRNA synthetase subunit beta; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (806 aa) | ||||
KRK46472.1 | Glutamine synthetase. (447 aa) | ||||
KRK46500.1 | Coenzyme A biosynthesis bifunctional protein CoaBC; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (400 aa) | ||||
asnS | asparaginyl-tRNA synthetase. (433 aa) | ||||
purC | Phosphoribosylaminoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family. (250 aa) | ||||
purS | Hypothetical protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in the transfer of the am [...] (85 aa) | ||||
purQ | purQ protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in the transfer of the ammonia mo [...] (224 aa) | ||||
purL | purL protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in the transfer of the ammonia mo [...] (738 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase. (344 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Belongs to the GARS family. (420 aa) | ||||
fhs | Formate--tetrahydrofolate ligase; Belongs to the formate--tetrahydrofolate ligase family. (555 aa) | ||||
carA | Carbamoyl-phosphate synthase; Belongs to the CarA family. (358 aa) | ||||
carB | Carbamoyl-phosphate synthase large chain. (1061 aa) | ||||
glyS | glycyl-tRNA synthetase subunit beta. (691 aa) | ||||
glyQ | glycyl-tRNA synthetase subunit alpha. (305 aa) | ||||
KRK46647.1 | Hypothetical protein. (147 aa) | ||||
aspS | aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (589 aa) | ||||
hisS | histidine--tRNA ligase. (437 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (571 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (338 aa) | ||||
metG | Methionyl-trna synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (688 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (422 aa) | ||||
KRK46068.1 | Hypothetical protein; Belongs to the UPF0374 family. (185 aa) | ||||
dltA | D-alanine--poly(phosphoribitol) ligase subunit 1; Catalyzes the first step in the D-alanylation of lipoteichoic acid (LTA), the activation of D-alanine and its transfer onto the D- alanyl carrier protein (Dcp) DltC. In an ATP-dependent two-step reaction, forms a high energy D-alanyl-AMP intermediate, followed by transfer of the D-alanyl residue as a thiol ester to the phosphopantheinyl prosthetic group of the Dcp. D-alanylation of LTA plays an important role in modulating the properties of the cell wall in Gram-positive bacteria, influencing the net charge of the cell wall. Belongs to [...] (509 aa) | ||||
KRK46219.1 | Cobyric acid synthase. (235 aa) | ||||
KRK46220.1 | UDP-N-acetylmuramyl tripeptide synthase. (448 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (194 aa) | ||||
atpE | Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (70 aa) | ||||
atpF | ATP synthase F0 sector subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (169 aa) | ||||
atpH | H(+)-transporting ATPase F(1) delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (181 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (505 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (315 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (466 aa) | ||||
atpC | ATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa) | ||||
KRK46261.1 | 5-formyltetrahydrofolate cyclo-ligase; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (184 aa) | ||||
ddl | D-alanine--d-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (372 aa) | ||||
KRK46269.1 | Bifunctional glutamate--cysteine ligase glutathione synthetase; Belongs to the glutamate--cysteine ligase type 1 family. (754 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (881 aa) | ||||
KRK46278.1 | Folylpolyglutamate synthase; Belongs to the folylpolyglutamate synthase family. (436 aa) | ||||
KRK46291.1 | Asparagine synthase. (631 aa) | ||||
murE | Udp-n-acetylmuramoyl-l-alanyl-d-glutamate--2, 6-diaminopimelate ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Belongs to the MurCDEF family. MurE subfamily. (490 aa) | ||||
murD | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (458 aa) | ||||
ileS | ileS protein; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (927 aa) | ||||
birA | Biotin operon repressor biotin--[acetyl-CoA-carboxylase] synthetase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. (330 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (418 aa) | ||||
purA | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa) | ||||
KRK45687.1 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (487 aa) | ||||
nadE | Nh(3)-dependent nad(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source; Belongs to the NAD synthetase family. (275 aa) | ||||
KRK45694.1 | Hypothetical protein. (128 aa) | ||||
KRK45695.1 | acetyl-CoA carboxylase, biotin carboxylase subunit. (432 aa) | ||||
KRK45696.1 | acetyl-CoA carboxylase, carboxyl transferase subunit beta. (218 aa) | ||||
KRK45697.1 | acetyl-CoA carboxylase, carboxyl transferase subunit alpha. (254 aa) | ||||
gltX | Glutamyl-trna synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (497 aa) | ||||
cysS | cysteine--tRNA ligase; Belongs to the class-I aminoacyl-tRNA synthetase family. (473 aa) | ||||
guaA | Gmp synthase; Catalyzes the synthesis of GMP from XMP. (513 aa) | ||||
ddl-2 | D-alanine--D-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (354 aa) | ||||
murF | UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (458 aa) | ||||
tilS | tRNA(Ile)-lysidine synthase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. (455 aa) | ||||
lysS | Lysyl-trna synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (499 aa) | ||||
KRK45512.1 | Hypothetical protein. (422 aa) | ||||
gatB | glutamyl-tRNA(Gln) amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa) | ||||
gatA | Aspartyl glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (487 aa) | ||||
gatC | Hypothetical protein; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (100 aa) | ||||
ligA | NAD-dependent DNA ligase; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (676 aa) | ||||
pyrG | Ctp synthase (utp--ammonia ligase) (ctp synthetase); Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (530 aa) | ||||
KRK45346.1 | Rep protein. (265 aa) | ||||
alaS | Alanine--trna ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (885 aa) |