STRINGSTRING
APT88156.1 APT88156.1 APT88159.1 APT88159.1 sdhA sdhA APT88161.1 APT88161.1 APT88356.1 APT88356.1 APT88377.1 APT88377.1 APT88479.1 APT88479.1 aspA aspA acnA acnA mqo mqo APT89253.1 APT89253.1 APT89284.1 APT89284.1 mdh mdh APT89493.1 APT89493.1 pckG pckG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
APT88156.1Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa)
APT88159.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (256 aa)
sdhAPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. (670 aa)
APT88161.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (249 aa)
APT88356.1Isocitrate dehydrogenase; NADP-specific, catalyzes the formation of 2-oxoglutarate from isocitrate or oxalosuccinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family. (739 aa)
APT88377.1Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. (1137 aa)
APT88479.1Citrate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (430 aa)
aspAAspartate ammonia-lyase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (467 aa)
acnAAconitate hydratase; Catalyzes the conversion of citrate to isocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (938 aa)
mqoMalate:quinone oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (495 aa)
APT89253.1Pyruvate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (698 aa)
APT89284.1Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (918 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (324 aa)
APT89493.1acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (500 aa)
pckGPhosphoenolpyruvate carboxykinase; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family. (606 aa)
Your Current Organism:
Corynebacterium frankenforstense
NCBI taxonomy Id: 1437875
Other names: C. frankenforstense DSM 45800, Corynebacterium frankenforstense DSM 45800, Corynebacterium sp. ST18
Server load: low (26%) [HD]