STRINGSTRING
pyrF pyrF AHG18258.2 AHG18258.2 AHG18259.1 AHG18259.1 trpD trpD trpC trpC trpB trpB trpA trpA tdk tdk ansA ansA AHG18343.1 AHG18343.1 AHG18344.1 AHG18344.1 amn amn AHG18749.1 AHG18749.1 purF purF AHG18780.1 AHG18780.1 truA truA AHG18785.1 AHG18785.1 pdxB pdxB AHG18787.1 AHG18787.1 AHG18788.1 AHG18788.1 aroC aroC AHG18870.1 AHG18870.1 purC purC dapA dapA AHG18975.1 AHG18975.1 upp upp purM purM purN purN guaA guaA guaB guaB AHG19048.1 AHG19048.1 glyA glyA purL purL AHG19137.1 AHG19137.1 dapD dapD AHG19231.1 AHG19231.1 argA argA thyA thyA AHG19302.1 AHG19302.1 AHG19308.2 AHG19308.2 gcvP gcvP gcvH gcvH gcvT gcvT AHG19346.1 AHG19346.1 gapA gapA AHG19395.2 AHG19395.2 AHG19426.1 AHG19426.1 AHG19456.1 AHG19456.1 AHG19584.1 AHG19584.1 cpdA cpdA AHG19701.1 AHG19701.1 AHG19709.2 AHG19709.2 AHG19721.1 AHG19721.1 aroQ aroQ AHG19839.1 AHG19839.1 AHG19841.1 AHG19841.1 AHG19864.1 AHG19864.1 aroE aroE AHG19945.1 AHG19945.1 argD argD AHG19948.1 AHG19948.1 aroB aroB aroK aroK AHG19971.1 AHG19971.1 asd asd AHG20071.1 AHG20071.1 purH purH purD purD AHG20103.1 AHG20103.1 argH argH argG argG argB argB argC argC argE argE metL metL dut dut pyrE pyrE asnA asnA cyaA cyaA AHG20493.1 AHG20493.1 AHG20576.1 AHG20576.1 AHG20595.1 AHG20595.1 aspA aspA purA purA cpdB cpdB argR argR pyrI pyrI pyrB pyrB AHG21034.1 AHG21034.1 deoD deoD serB serB thrA thrA thrB thrB AHG21117.1 AHG21117.1 dapB dapB carA carA carB carB folA folA guaC guaC truD truD surE surE pcm pcm AHG21283.1 AHG21283.1 rpoS rpoS tyrA tyrA pheA pheA gpt gpt proB proB proA proA AHG21368.1 AHG21368.1 aroL aroL ppnP ppnP apt apt adk adk ushA ushA purK purK purE purE folD folD AHG21531.1 AHG21531.1 asnB asnB AHG21608.1 AHG21608.1 AHG21768.1 AHG21768.1 AHG21802.1 AHG21802.1 cdd cdd udk udk hisI hisI hisF hisF hisA hisA hisH hisH hisB hisB hisC hisC hisD hisD hisG hisG ansB ansB serC serC aroA aroA AHG21985.2 AHG21985.2 pyrD pyrD AHG22008.1 AHG22008.1 pabB pabB purT purT pyrC pyrC tmk tmk AHG22262.1 AHG22262.1 AHG22290.1 AHG22290.1 mdtK mdtK add add AHG22526.1 AHG22526.1 AJW28989.1 AJW28989.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (242 aa)
AHG18258.2With component II, the glutamine amidotransferase, catalyzes the formation of anthranilate from chorismate and glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (519 aa)
AHG18259.1Anthranilate synthase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (193 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (332 aa)
trpCIndole-3-glycerol phosphate synthase; Monomeric bifunctional protein; functions in tryptophan biosynthesis pathway; phosphoribosylanthranilate is rearranged to carboxyphenylaminodeoxyribulosephosphate which is then closed to form indole-3-glycerol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (453 aa)
trpBTryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (396 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (268 aa)
tdkThymidine kinase; Catalyzes the formation of thymidine 5'-phosphate from thymidine; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa)
ansACytoplasmic asparaginase I; Converts asparagine to aspartate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa)
AHG18343.1Shikimate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the shikimate dehydrogenase family. (295 aa)
AHG18344.14-hydroxyphenylpyruvate dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (620 aa)
amnAMP nucleosidase; Catalyzes the hydrolysis of the N-glycosidic bond of AMP to form adenine and ribose 5-phosphate. Involved in regulation of AMP concentrations. (485 aa)
AHG18749.15'-nucleotidase; Catalyzes the strictly specific dephosphorylation of 2'- deoxyribonucleoside 5'-monophosphates. (199 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa)
AHG18780.1Membrane protein required for colicin V production; Derived by automated computational analysis using gene prediction method: Protein Homology. (166 aa)
truAtRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (273 aa)
AHG18785.1Semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate-semialdehyde dehydrogenase family. (336 aa)
pdxBPhosphoglycerate dehydrogenase; Catalyzes the oxidation of erythronate-4-phosphate to 3- hydroxy-2-oxo-4-phosphonooxybutanoate. (377 aa)
AHG18787.1AraC family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa)
AHG18788.1Multidrug DMT transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (303 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa)
AHG18870.1Aspartate racemase; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (237 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (293 aa)
AHG18975.1Uracil transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (208 aa)
purMPhosphoribosylaminoimidazole synthetase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (212 aa)
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (525 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (515 aa)
AHG19048.1Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (267 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1296 aa)
AHG19137.1Phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (271 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (274 aa)
AHG19231.1LOG family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa)
argAN-acetylglutamate synthase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (441 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa)
AHG19302.1Phenylhydantoinase; Catalyzes the hydrolytic cleavage of hydantoin with aromatic side chains at the 5'position; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa)
AHG19308.2Purine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa)
gcvPGlycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (959 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (128 aa)
gcvTGlycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (365 aa)
AHG19346.1D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (412 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase; Catalyzes the NAD-dependent conversion of D-erythrose 4- phosphate to 4-phosphoerythronate. (338 aa)
AHG19395.2Amidohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (393 aa)
AHG19426.1Catalyzes the formation of inosine monophosphate from hypoxanthine and 5-phospho-alpha-D-ribose 1-diphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (178 aa)
AHG19456.1Nucleoside-triphosphate diphosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (198 aa)
AHG19584.1Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (273 aa)
cpdADiguanylate phosphodiesterase; Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes. (275 aa)
AHG19701.1Acetylornithine deacetylase; Catalyzes the formation of L-ornithine from N(2)-acetyl-L-ornithine; Derived by automated computational analysis using gene prediction method: Protein Homology. (382 aa)
AHG19709.2Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (162 aa)
AHG19721.1Glutamine amidotransferase; Catalyzes the transfer of the ammonia group from glutamine to a new carbon-nitrogen group; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
aroQ3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (150 aa)
AHG19839.1Catalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa)
AHG19841.1ArtI protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial solute-binding protein 3 family. (254 aa)
AHG19864.1Aspartate kinase; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; functions in amino acid biosynthesis; lysine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (455 aa)
aroEShikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (272 aa)
AHG19945.1Crp/Fnr family transcriptional regulator; cAMP receptor protein; complexes with cyclic AMP and binds to specific DNA sites near the promoter to regulate the transcription of several catabolite-sensitive operons; Derived by automated computational analysis using gene prediction method: Protein Homology. (210 aa)
argDAcetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (405 aa)
AHG19948.1Anthranilate synthase component II; TrpG; with TrpE catalyzes the formation of anthranilate and glutamate from chorismate and glutamine; TrpG provides the glutamine amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (362 aa)
aroKShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
AHG19971.1Nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (228 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (367 aa)
AHG20071.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (449 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (529 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa)
AHG20103.1All-trans-retinol 13,14-reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (754 aa)
argHArgininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa)
argGArgininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (405 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate. (257 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa)
argEAcetylornithine deacetylase; Catalyzes the formation of L-ornithine from N(2)-acetyl-L-ornithine in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa)
metLAspartate kinase; Multifunctional homodimeric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (811 aa)
dutDeoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (152 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
asnAAsparagine synthetase AsnA; Catalyzes the formation of asparagine from aspartate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa)
cyaAAdenylate cyclase; Catalyzes transfer of adenylyl group of ATP from pyrophosphate to the 3'-hydroxyl group to form cyclic AMP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the adenylyl cyclase class-1 family. (851 aa)
AHG20493.1Uridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1-phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the PNP/UDP phosphorylase family. (253 aa)
AHG20576.1Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IUNH family. (327 aa)
AHG20595.1Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)
aspAAspartate ammonia-lyase; Catalyzes the formation of fumarate from aspartate; Derived by automated computational analysis using gene prediction method: Protein Homology. (478 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
cpdBPeriplasmic enzyme; functions during ribonucleic acid degradation; 2',3'-cyclic nucleotides are first converted to 3'-nucleotide and then cleaved to yield a ribonucleotide and a phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (650 aa)
argRArginine repressor; Regulates arginine biosynthesis genes. (156 aa)
pyrIAspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (154 aa)
pyrBAspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (311 aa)
AHG21034.15'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (299 aa)
deoDPurine nucleoside phosphorylase; Catalyzes the reversible phosphorolysis of ribonucleosides and 2'- deoxyribonucleosides to the free base and (2'-deoxy)ribose-1- phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
serBPhosphoserine phosphatase; Catalyzes the formation of serine from O-phosphoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (325 aa)
thrAAspartate kinase; Multifunctional homotetrameric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (819 aa)
thrBSerine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa)
AHG21117.1Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa)
dapBDihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa)
carACarbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (382 aa)
carBCarbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (1074 aa)
folADihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (160 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. (347 aa)
truDtRNA pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs; Belongs to the pseudouridine synthase TruD family. (348 aa)
surEStationary phase survival protein SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. (253 aa)
pcmprotein-L-isoaspartate O-methyltransferase; Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. (208 aa)
AHG21283.1Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa)
rpoSRNA polymerase sigma factor RpoS; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. (332 aa)
tyrAChorismate mutase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (373 aa)
pheAChorismate mutase; Catalyzing the formation of prephenate from chorismate and the formation of phenylpyruvate from prephenate in phenylalanine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa)
gptXanthine-guanine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (152 aa)
proBGamma-glutamyl kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (373 aa)
proAGamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (417 aa)
AHG21368.1Aspartate racemase; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa)
aroLShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate. (174 aa)
ppnPHypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (96 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (183 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa)
ushA5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (550 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (355 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (174 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (288 aa)
AHG21531.1Dihydrodipicolinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (312 aa)
asnBFunctions in asparagine biosynthesis; converts glutamine, aspartate, ATP, and water to glutamate, asparagine, pyrophosphate and AMP; Derived by automated computational analysis using gene prediction method: Protein Homology. (554 aa)
AHG21608.13',5'-cyclic-nucleotide phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (327 aa)
AHG21768.1Glycosyl transferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (317 aa)
AHG21802.1Isoaspartyl peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (319 aa)
cddCytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis. (294 aa)
udkUridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa)
hisIphosphoribosyl-ATP pyrophosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (204 aa)
hisFImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (258 aa)
hisA1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa)
hisHImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (196 aa)
hisBImidazoleglycerol-phosphate dehydratase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the histidinol- phosphatase family. (355 aa)
hisCHistidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (358 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (435 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. (299 aa)
ansBL-asparaginase II; Catalyzes the formation of aspartate from asparagine, periplasmic; regulated by cyclic AMP receptor protein (CRP) and also induced by anaerobiosis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the asparaginase 1 family. (348 aa)
serC3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (428 aa)
AHG21985.2Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa)
AHG22008.1Catalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa)
pabBPara-aminobenzoate synthase component 1; catalyzes the formation of 4-amino-4-deoxychorismate from chorismate and L-glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa)
purTPhosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (392 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (349 aa)
tmkThymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (212 aa)
AHG22262.1Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)
AHG22290.1Chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. (174 aa)
mdtKMultidrug transporter; Multidrug efflux pump that functions probably as a Na(+)/drug antiporter; Belongs to the multi antimicrobial extrusion (MATE) (TC 2.A.66.1) family. MdtK subfamily. (458 aa)
addAdenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (332 aa)
AHG22526.1Dihydromonapterin reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (240 aa)
AJW28989.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (220 aa)
Your Current Organism:
Chania multitudinisentens
NCBI taxonomy Id: 1441930
Other names: C. multitudinisentens RB-25, Chania multitudinisentens RB-25
Server load: low (14%) [HD]