STRINGSTRING
sdhA sdhA AHG18488.1 AHG18488.1 AHG19079.1 AHG19079.1 AHG19334.1 AHG19334.1 AHG19439.2 AHG19439.2 sthA sthA glpB glpB AHG20687.1 AHG20687.1 ubiF ubiF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
sdhAPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
AHG18488.1D-amino acid oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (371 aa)
AHG19079.1Cholesterol oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (542 aa)
AHG19334.1Oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (400 aa)
AHG19439.2E3 component of pyruvate and 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa)
sthAPyridine nucleotide transhydrogenase; Conversion of NADPH, generated by peripheral catabolic pathways, to NADH, which can enter the respiratory chain for energy generation; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (465 aa)
glpBGlycerol-3-phosphate dehydrogenase; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor. (423 aa)
AHG20687.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa)
ubiF2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Catalyzes the formation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol from 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol; functions in the biosynthesis of ubiquinone or coenzyme Q; Derived by automated computational analysis using gene prediction method: Protein Homology. (393 aa)
Your Current Organism:
Chania multitudinisentens
NCBI taxonomy Id: 1441930
Other names: C. multitudinisentens RB-25, Chania multitudinisentens RB-25
Server load: low (16%) [HD]