Your Input: | |||||
KALB_904 | Hypothetical protein. (604 aa) | ||||
KALB_192 | ABC transporter ATP-binding protein. (752 aa) | ||||
uvrB | UvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...] (716 aa) | ||||
uvrC | UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (657 aa) | ||||
KALB_3117 | DEAD/DEAH box helicase domain protein. (832 aa) | ||||
KALB_3981 | Hypothetical protein. (796 aa) | ||||
recF | DNA replication and repair protein recF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family. (384 aa) | ||||
KALB_429 | Hypothetical protein. (223 aa) | ||||
KALB_4923 | Hypothetical protein. (255 aa) | ||||
KALB_5854 | Hypothetical protein. (765 aa) | ||||
lexA | Hypothetical protein; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (220 aa) | ||||
uvrA | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (952 aa) | ||||
KALB_6498 | Hypothetical protein. (231 aa) | ||||
ruvB | Hypothetical protein; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (348 aa) | ||||
ruvA | Hypothetical protein; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (200 aa) | ||||
lexA-2 | Hypothetical protein; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (248 aa) | ||||
recA | Hypothetical protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (347 aa) | ||||
KALB_6717 | Hypothetical protein. (1528 aa) | ||||
KALB_6724 | Hypothetical protein. (155 aa) | ||||
dinB | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (428 aa) | ||||
KALB_7162 | Hypothetical protein. (1762 aa) | ||||
KALB_8053 | Hypothetical protein. (280 aa) | ||||
KALB_8596 | Hypothetical protein. (212 aa) |