STRINGSTRING
guaA guaA pbuG pbuG purE purE purK purK purB purB purC purC purS purS purQ purQ purL purL purF purF purM purM purN purN purH purH purD purD AJF83997.1 AJF83997.1 cpdB cpdB carA carA carB carB argF argF purU purU guaD guaD ade ade pyrR pyrR pyrP pyrP pyrB pyrB pyrC pyrC carA-2 carA-2 carB-2 carB-2 pyrK pyrK pyrD pyrD pyrF pyrF pyrE pyrE AJF85164.1 AJF85164.1 deoD deoD pbuX pbuX xpt xpt tdk tdk AJF85585.1 AJF85585.1 deoB deoB folD folD cdd cdd AJF85788.1 AJF85788.1 udk udk apt apt pbuO pbuO guaC guaC AJF86305.1 AJF86305.1 AJF86311.1 AJF86311.1 upp upp glyA glyA tdk-2 tdk-2 deoA deoA deoC deoC purA purA guaB guaB tmk tmk tilS tilS hpt hpt purT purT
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (513 aa)
pbuGGuanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (440 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (380 aa)
purBAdenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (431 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (84 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (227 aa)
purLPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (742 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (476 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (195 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (512 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (422 aa)
AJF83997.1Adenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (580 aa)
cpdB2', 3'-cyclic nucleotide 2'-phosphodiesterase; In Escherichia coli this is a periplasmic enzyme while in gram positive organisms it may be anchored at the cell surface; this protein appears to consist of a dimer fusion; functions during ribonucleic acid degradation; 2',3'-cyclic nucleotides are first converted to 3'-nucleotide and then cleaved to yield a ribonucleotide and a phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1449 aa)
carACarbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (353 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1030 aa)
argFOrnithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (317 aa)
purUFormyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (300 aa)
guaDGuanine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (156 aa)
adeAdenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (575 aa)
pyrRBifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa)
pyrPUracil permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa)
pyrBAspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (304 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (428 aa)
carA-2Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa)
carB-2Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1071 aa)
pyrKDihydroorotate dehydrogenase; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (256 aa)
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate. (311 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (239 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (210 aa)
AJF85164.1Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. (144 aa)
deoDPurine nucleoside phosphorylase DeoD-type; Derived by automated computational analysis using gene prediction method: Protein Homology. (232 aa)
pbuXXanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (437 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (194 aa)
tdkThymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa)
AJF85585.1Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (271 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (394 aa)
folD5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (283 aa)
cddCytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (136 aa)
AJF85788.1Competence protein ComE; Derived by automated computational analysis using gene prediction method: Protein Homology. (189 aa)
udkUridine kinase; Functions in pyrimidine salvage; pyrimidine ribonucleoside kinase; phosphorylates nucleosides or dinucleosides to make UMP or CMP using ATP or GTP as the donor; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa)
pbuOGuanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (326 aa)
AJF86305.15'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (462 aa)
AJF86311.1Uric acid permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (117 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (415 aa)
tdk-2Thymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (198 aa)
deoAThymidine phosphorylase; Catalyzes the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa)
deoCDeoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily. (222 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
tmkThymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (212 aa)
tilStRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (472 aa)
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa)
purTPhosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (384 aa)
Your Current Organism:
Bacillus atrophaeus
NCBI taxonomy Id: 1452
Other names: ATCC 49337, B. atrophaeus, Bacillus atriphaeus, Bacillus sp. S2 BC-2, Bacillus subtilis DSM 2277, Bacillus subtilis DSM 675, CCUG 28524, CIP 107159, DSM 7264, IFO 15539, JCM 9070, LMG 16797, LMG:16797, NBRC 15539, NRRL NRS-213
Server load: low (14%) [HD]