STRINGSTRING
guaA guaA purE purE purK purK purB purB purC purC purS purS purQ purQ purL purL purF purF purM purM purN purN purH purH purD purD AJF83997.1 AJF83997.1 cpdB cpdB pgcA pgcA cysC cysC sat sat yjbM yjbM guaD guaD ade ade sat-2 sat-2 cysC-2 cysC-2 gmk gmk nrdE nrdE nrdF nrdF deoD deoD xpt xpt ndk ndk AJF85585.1 AJF85585.1 deoB deoB nudF nudF AJF85863.1 AJF85863.1 apt apt rdgB rdgB pyk pyk guaC guaC AJF86305.1 AJF86305.1 allB allB pucG pucG allC allC ggt-2 ggt-2 ureC ureC ureB ureB ureA ureA ywaC ywaC purA purA guaB guaB dck dck dgk dgk prs prs hpt hpt adk adk purT purT
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (513 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (380 aa)
purBAdenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (431 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (84 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (227 aa)
purLPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (742 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (476 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (195 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (512 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (422 aa)
AJF83997.1Adenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (580 aa)
cpdB2', 3'-cyclic nucleotide 2'-phosphodiesterase; In Escherichia coli this is a periplasmic enzyme while in gram positive organisms it may be anchored at the cell surface; this protein appears to consist of a dimer fusion; functions during ribonucleic acid degradation; 2',3'-cyclic nucleotides are first converted to 3'-nucleotide and then cleaved to yield a ribonucleotide and a phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1449 aa)
pgcAPhosphoglucomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (582 aa)
cysCAdenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. (199 aa)
satATP sulfurylase; ATPS; converts ATP and sulfate to 5'phosphosulfate and pyrophosphate; in some organisms this enzyme is involved in the incorporation of inorganic sulfate while in others it is involved in the production of ATP in the reverse direction; the enzyme from Thermus thermophilus is dimeric and binds a zinc ion that is coordinated by cysteine and histidine residues that are not found in all related proteins but is found in some thermophilic organisms; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)
yjbMGTP pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
guaDGuanine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (156 aa)
adeAdenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (575 aa)
sat-2ATP sulfurylase; ATPS; converts ATP and sulfate to 5'phosphosulfate and pyrophosphate; in some organisms this enzyme is involved in the incorporation of inorganic sulfate while in others it is involved in the production of ATP in the reverse direction; the enzyme from Thermus thermophilus is dimeric and binds a zinc ion that is coordinated by cysteine and histidine residues that are not found in all related proteins but is found in some thermophilic organisms; Derived by automated computational analysis using gene prediction method: Protein Homology. (382 aa)
cysC-2Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. (197 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (204 aa)
nrdERibonucleotide-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (700 aa)
nrdFRibonucleotide-diphosphate reductase; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (328 aa)
deoDPurine nucleoside phosphorylase DeoD-type; Derived by automated computational analysis using gene prediction method: Protein Homology. (232 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (194 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (148 aa)
AJF85585.1Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (271 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (394 aa)
nudFADP-ribose pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Nudix hydrolase family. (185 aa)
AJF85863.1(p)ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (734 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa)
rdgBNucleoside-triphosphate diphosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (195 aa)
pykPyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (585 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (326 aa)
AJF86305.15'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (462 aa)
allBAllantoinase; Catalyzes the conversion of allantoin (5-ureidohydantoin) to allantoic acid by hydrolytic cleavage of the five-member hydantoin ring; Belongs to the metallo-dependent hydrolases superfamily. Allantoinase family. (447 aa)
pucGDerived by automated computational analysis using gene prediction method: Protein Homology. (418 aa)
allCAllantoate amidohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (413 aa)
ggt-2Gamma-glutamyltranspeptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (525 aa)
ureCUrease subunit alpha; Ureases catalyze the hydrolysis of urea into ammonia and carbon dioxide; in Helicobacter pylori the ammonia released plays a key role in bacterial survival by neutralizing acids when colonizing the gastric mucosa; the holoenzyme is composed of 3 ureC (alpha) and 3 ureAB (gamma/beta) subunits; Derived by automated computational analysis using gene prediction method: Protein Homology. (569 aa)
ureBUrease subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the urease beta subunit family. (124 aa)
ureAUrease subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the urease gamma subunit family. (105 aa)
ywaCGTP pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (210 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
dckDeoxycytidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa)
dgkDeoxyguanosine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (207 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (317 aa)
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (217 aa)
purTPhosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (384 aa)
Your Current Organism:
Bacillus atrophaeus
NCBI taxonomy Id: 1452
Other names: ATCC 49337, B. atrophaeus, Bacillus atriphaeus, Bacillus sp. S2 BC-2, Bacillus subtilis DSM 2277, Bacillus subtilis DSM 675, CCUG 28524, CIP 107159, DSM 7264, IFO 15539, JCM 9070, LMG 16797, LMG:16797, NBRC 15539, NRRL NRS-213
Server load: low (34%) [HD]