Your Input: | |||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (430 aa) | ||||
pyrG | Glutamine amidotransferase class-I:CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (536 aa) | ||||
atpB | ATP synthase A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (241 aa) | ||||
atpE | ATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa) | ||||
atpG-2 | ATP synthase B/B' CF(0); F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (153 aa) | ||||
atpF | ATP synthase B/B' CF(0); F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (170 aa) | ||||
atpH | ATP synthase, delta (OSCP) subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (180 aa) | ||||
atpA | ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (505 aa) | ||||
atpG | ATP synthase gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (316 aa) | ||||
atpC | ATP synthase, Epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (134 aa) | ||||
atpD | ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (486 aa) | ||||
pgk | COG126 3-phosphoglycerate kinase [Carbohydrate transport and metabolism]; Belongs to the phosphoglycerate kinase family. (402 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (152 aa) | ||||
gpmI | Phosphoglycerate mutase, co-factor-independent (iPGM); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (540 aa) | ||||
tpi | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (241 aa) | ||||
pgi | Phosphoglucose isomerase (PGI); COG166 Glucose-6-phosphate isomerase [Carbohydrate transport and metabolism]; Belongs to the GPI family. (527 aa) | ||||
pykF | COG469 Pyruvate kinase [Carbohydrate transport and metabolism]; Belongs to the pyruvate kinase family. (596 aa) | ||||
ABM70129.1 | COG3588 Fructose-1,6-bisphosphate aldolase [Carbohydrate transport and metabolism]. (355 aa) | ||||
cbbA | Fructose-bisphosphate/sedoheptulose-1, 7-bisphosph ate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (357 aa) | ||||
glk | COG837 Glucokinase [Carbohydrate transport and metabolism]; Belongs to the bacterial glucokinase family. (344 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (234 aa) |