Your Input: | |||||
guaB | Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa) | ||||
tmk | Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (213 aa) | ||||
tilS | tRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (464 aa) | ||||
hprT | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (217 aa) | ||||
ddl-2 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa) | ||||
AMM95333.1 | Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (304 aa) | ||||
guaA | GMP synthase; Catalyzes the synthesis of GMP from XMP. (518 aa) | ||||
pbuG | Guanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (443 aa) | ||||
purE | N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa) | ||||
purK | Phosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (378 aa) | ||||
purB | Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (430 aa) | ||||
purC | Phosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa) | ||||
purS | Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (84 aa) | ||||
purQ | Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (228 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (740 aa) | ||||
purF_1 | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (471 aa) | ||||
purM | Phosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (191 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (418 aa) | ||||
AMM91510.1 | Adenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa) | ||||
iadA | Isoaspartyl dipeptidase; Catalyzes the hydrolytic cleavage of a subset of L- isoaspartyl (L-beta-aspartyl) dipeptides. Used to degrade proteins damaged by L-isoaspartyl residues formation. Belongs to the peptidase M38 family. (391 aa) | ||||
carA | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (360 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1039 aa) | ||||
argF | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (316 aa) | ||||
pyrR | Bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa) | ||||
pyrP | Uracil permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa) | ||||
pyrB | Aspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (311 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (428 aa) | ||||
carA-2 | Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (368 aa) | ||||
pyrAB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1068 aa) | ||||
pyrK | Dihydroorotate dehydrogenase; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (259 aa) | ||||
pyrD | Dihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate. (313 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (238 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (211 aa) | ||||
AMM93318.1 | Guanine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa) | ||||
deoD | Purine nucleoside phosphorylase DeoD-type; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
AMM93625.1 | Xanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (437 aa) | ||||
xpt | Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (199 aa) | ||||
deoA | Thymidine phosphorylase; Catalyzes the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa) | ||||
pupG | Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (270 aa) | ||||
cdd | Cytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (132 aa) | ||||
comEB | Competence protein ComE; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa) | ||||
udk | Uridine kinase; Functions in pyrimidine salvage; pyrimidine ribonucleoside kinase; phosphorylates nucleosides or dinucleosides to make UMP or CMP using ATP or GTP as the donor; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa) | ||||
purF_2 | Amidophosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (456 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa) | ||||
guaC | Guanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (327 aa) | ||||
AMM94583.1 | Uracil/xanthine transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (431 aa) | ||||
AMM95662.1 | 2', 3'-cyclic nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (603 aa) | ||||
AMM94982.1 | 5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (461 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa) | ||||
tdk | Thymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa) |