STRINGSTRING
guaB guaB tmk tmk tilS tilS hprT hprT adk adk ddl-2 ddl-2 AMM95333.1 AMM95333.1 guaA guaA pbuG pbuG purE purE purK purK purB purB purC purC purS purS purQ purQ purL purL purF_1 purF_1 purM purM purN purN purH purH purD purD AMM91510.1 AMM91510.1 iadA iadA carA carA carB carB argF argF pyrR pyrR pyrP pyrP pyrB pyrB pyrC pyrC carA-2 carA-2 pyrAB pyrAB pyrK pyrK pyrD pyrD pyrF pyrF pyrE pyrE AMM93318.1 AMM93318.1 deoD deoD AMM93625.1 AMM93625.1 xpt xpt deoA deoA pupG pupG cdd cdd comEB comEB udk udk purF_2 purF_2 apt apt guaC guaC AMM94583.1 AMM94583.1 AMM95662.1 AMM95662.1 AMM94982.1 AMM94982.1 upp upp tdk tdk purA purA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa)
tmkThymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (213 aa)
tilStRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (464 aa)
hprTHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (217 aa)
ddl-2Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa)
AMM95333.1Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (304 aa)
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (518 aa)
pbuGGuanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (443 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (378 aa)
purBAdenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (430 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (84 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (228 aa)
purLPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (740 aa)
purF_1Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (471 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (191 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (418 aa)
AMM91510.1Adenine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa)
iadAIsoaspartyl dipeptidase; Catalyzes the hydrolytic cleavage of a subset of L- isoaspartyl (L-beta-aspartyl) dipeptides. Used to degrade proteins damaged by L-isoaspartyl residues formation. Belongs to the peptidase M38 family. (391 aa)
carAHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (360 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1039 aa)
argFOrnithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (316 aa)
pyrRBifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa)
pyrPUracil permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa)
pyrBAspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (311 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (428 aa)
carA-2Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (368 aa)
pyrABCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1068 aa)
pyrKDihydroorotate dehydrogenase; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (259 aa)
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate. (313 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (238 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (211 aa)
AMM93318.1Guanine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa)
deoDPurine nucleoside phosphorylase DeoD-type; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa)
AMM93625.1Xanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (437 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (199 aa)
deoAThymidine phosphorylase; Catalyzes the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa)
pupGPurine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (270 aa)
cddCytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (132 aa)
comEBCompetence protein ComE; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa)
udkUridine kinase; Functions in pyrimidine salvage; pyrimidine ribonucleoside kinase; phosphorylates nucleosides or dinucleosides to make UMP or CMP using ATP or GTP as the donor; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
purF_2Amidophosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (456 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (327 aa)
AMM94583.1Uracil/xanthine transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (431 aa)
AMM95662.12', 3'-cyclic nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (603 aa)
AMM94982.15'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (461 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa)
tdkThymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)
Your Current Organism:
Bacillus simplex
NCBI taxonomy Id: 1478
Other names: ATCC 49097, Arthrobacter sp. CHR2P1B2-M, B. simplex, Bacillus maroccanus, Bacillus sp. JP44SK12, Bacillus sp. JP44SK13, Bacillus sp. JP44SK25, Bacillus sp. JP44SK26, Bacillus sp. JP44SK29, Bacillus sp. JP44SK30, Bacillus sp. JP44SK31, Bacillus sp. JP44SK32, CCUG 28889, CIP 106934, IFO 15720, JCM 12307, LMG 11160, LMG:11160, NBRC 15720, NRRL NRS-960
Server load: low (30%) [HD]