Your Input: | |||||
EO98_00040 | Histone; Derived by automated computational analysis using gene prediction method: Protein Homology. (70 aa) | ||||
EO98_00150 | Fibronectin-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (790 aa) | ||||
rpl44e | 50S ribosomal protein L44; Binds to the 23S rRNA. (92 aa) | ||||
rps27e | 30S ribosomal protein S27; Derived by automated computational analysis using gene prediction method: Protein Homology. (62 aa) | ||||
EO98_00195 | Translation initiation factor IF-2 subunit alpha; eIF-2A; functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (270 aa) | ||||
EO98_00205 | Phosphotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
EO98_00345 | tRNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (336 aa) | ||||
tfb | Transcription initiation factor IIB; Stabilizes TBP binding to an archaeal box-A promoter. Also responsible for recruiting RNA polymerase II to the pre-initiation complex (DNA-TBP-TFIIB). (337 aa) | ||||
rps2 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (245 aa) | ||||
rpoK | DNA-directed RNA polymerase subunit K; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoK/eukaryotic RPB6 RNA polymerase subunit family. (60 aa) | ||||
rpoN | DNA-directed RNA polymerase subunit N; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoN/eukaryotic RPB10 RNA polymerase subunit family. (62 aa) | ||||
rps9 | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (134 aa) | ||||
rpl13 | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (140 aa) | ||||
rpl18e | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL18 family. (126 aa) | ||||
gltX | glutamyl-tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (571 aa) | ||||
EO98_00575 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa) | ||||
lysS | lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (537 aa) | ||||
truD | Pseudouridine synthase; Could be responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs; Belongs to the pseudouridine synthase TruD family. (438 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. (115 aa) | ||||
EO98_01490 | ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
EO98_01545 | Methanogenesis marker protein 11; Derived by automated computational analysis using gene prediction method: Protein Homology. (300 aa) | ||||
EO98_01800 | alanyl-tRNA editing protein AlaX; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
EO98_01850 | glycyl-tRNA synthetease; Derived by automated computational analysis using gene prediction method: Protein Homology. (610 aa) | ||||
EO98_01870 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
sepS | O-phosphoseryl-tRNA ligase; Catalyzes the attachment of O-phosphoserine (Sep) to tRNA(Cys). (539 aa) | ||||
EO98_02015 | Deoxyribonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (68 aa) | ||||
EO98_02020 | Deoxyribonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (68 aa) | ||||
EO98_02025 | Deoxyribonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (68 aa) | ||||
EO98_02030 | Deoxyribonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (68 aa) | ||||
argS | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (569 aa) | ||||
prf1 | Peptide chain release factor 1; Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. (415 aa) | ||||
taw1 | tRNA-modifying enzyme; Component of the wyosine derivatives biosynthesis pathway that catalyzes the condensation of N-methylguanine with 2 carbon atoms from pyruvate to form the tricyclic 4-demethylwyosine (imG-14) on guanosine-37 of tRNA(Phe). (345 aa) | ||||
EO98_02100 | Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (185 aa) | ||||
EO98_02105 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (323 aa) | ||||
rpl7ae | 50S ribosomal protein L7; Multifunctional RNA-binding protein that recognizes the K- turn motif in ribosomal RNA, the RNA component of RNase P, box H/ACA, box C/D and box C'/D' sRNAs. (120 aa) | ||||
rps28e | 30S ribosomal protein S28; The function of S28E in the ribosome is unknown but the structure shows a variants OB-fold that is found in nucleic acid-binding proteins; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eS28 family. (73 aa) | ||||
rpl24e | 50S ribosomal protein L24; Binds to the 23S rRNA. (62 aa) | ||||
infB | Translation initiation factor IF-2; Function in general translation initiation by promoting the binding of the formylmethionine-tRNA to ribosomes. Seems to function along with eIF-2. (591 aa) | ||||
rps6e | 30S ribosomal protein S6; The function of this ribosomal subunit is unknown; Derived by automated computational analysis using gene prediction method: Protein Homology. (134 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec); Belongs to the class-II aminoacyl-tRNA synthetase family. Type-2 seryl-tRNA synthetase subfamily. (502 aa) | ||||
rps3ae | The function for this protein is unknown; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eS1 family. (204 aa) | ||||
EO98_03260 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa) | ||||
EO98_03270 | Ribosomal biosynthesis protein; Probably involved in the biogenesis of the ribosome. (157 aa) | ||||
rpl37ae | 50S ribosomal protein L37; Binds to the 23S rRNA. (94 aa) | ||||
rnp3 | Ribonuclease P protein component 3; Part of ribonuclease P, a protein complex that generates mature tRNA molecules by cleaving their 5'-ends; Belongs to the eukaryotic/archaeal RNase P protein component 3 family. (239 aa) | ||||
rpl15e | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL15 family. (196 aa) | ||||
alaS | alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (925 aa) | ||||
EO98_03695 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (86 aa) | ||||
rpl10e | 50S ribosomal protein L10e; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL16 family. (173 aa) | ||||
eif2b | Translation initiation factor IF-2 subunit beta; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. Belongs to the eIF-2-beta/eIF-5 family. (202 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). (437 aa) | ||||
pheS | phenylalanyl-tRNA synthetase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 2 subfamily. (492 aa) | ||||
pylS | pyrolysyl-tRNA ligase; Catalyzes the attachment of pyrrolysine to tRNA(Pyl). Pyrrolysine is a lysine derivative encoded by the termination codon UAG. (502 aa) | ||||
EO98_04055 | Pseudouridine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (160 aa) | ||||
EO98_04110 | DNA-directed RNA polymerase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the archaeal rpoM/eukaryotic RPA12/RPB9/RPC11 RNA polymerase family. (104 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 2 subfamily. (869 aa) | ||||
EO98_04555 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (141 aa) | ||||
dys | Deoxyhypusine synthase; Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a specific lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue. (317 aa) | ||||
EO98_04825 | Hypothetical protein; RNA-free RNase P that catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. Belongs to the HARP family. (247 aa) | ||||
EO98_05395 | SirA family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (75 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 3 subfamily. (317 aa) | ||||
EO98_05435 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa) | ||||
EO98_05480 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (547 aa) | ||||
EO98_05765 | Similar to yeast Dim2p protein that is essential for 40S ribosomal subunit; structural studies show binding to 3' end of 16S rRNA in complex with archaeal IF2 alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (182 aa) | ||||
eif1a | Translation initiation factor 1A; Seems to be required for maximal rate of protein biosynthesis. Enhances ribosome dissociation into subunits and stabilizes the binding of the initiator Met-tRNA(I) to 40 S ribosomal subunits. (111 aa) | ||||
EO98_05825 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (513 aa) | ||||
EO98_06010 | tRNA threonylcarbamoyladenosine biosynthesis protein; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. (363 aa) | ||||
gatB | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (495 aa) | ||||
gatA | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (475 aa) | ||||
gatC | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (93 aa) | ||||
EO98_06190 | Radical SAM protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa) | ||||
rps17e | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eS17 family. (64 aa) | ||||
EO98_06330 | CAAX protease; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa) | ||||
EO98_06650 | Serine/threonine protein kinase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is a component of the KEOPS complex that is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. The Kae1 domain likely plays a direct catalytic role in this reaction. The Bud32 domain probably displays kinase activity that regulates Kae1 function. In the N-terminal section; belongs to the KAE1 / TsaD family. (547 aa) | ||||
rps24e | 30S ribosomal protein S24; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eS24 family. (101 aa) | ||||
EO98_06690 | DNA-directed RNA polymerase subunit E; Participates in both the initiation and recycling phases of transcription; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
eif2g | Translation initiation factor IF-2 subunit gamma; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EIF2G subfamily. (408 aa) | ||||
leuS | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] (966 aa) | ||||
dys-2 | Deoxyhypusine synthase; Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a specific lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue. (345 aa) | ||||
rnz | Ribonuclease Z; Zinc phosphodiesterase, which displays some tRNA 3'- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA; Belongs to the RNase Z family. (305 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1059 aa) | ||||
taw2 | Methyltransferase; S-adenosyl-L-methionine-dependent transferase that acts as a component of the wyosine derivatives biosynthesis pathway. Catalyzes the transfer of the alpha-amino-alpha-carboxypropyl (acp) group from S- adenosyl-L-methionine to 4-demethylwyosine (imG-14), forming 7- aminocarboxypropyl-demethylwyosine (wybutosine-86) at position 37 of tRNA(Phe). (343 aa) | ||||
EO98_07420 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa) | ||||
EO98_07590 | 2-methylthioadenine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa) | ||||
EO98_07610 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (174 aa) | ||||
EO98_07660 | Hydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (92 aa) | ||||
EO98_07665 | Hydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (372 aa) | ||||
hypA | Hydrogenase nickel incorporation protein HypA; Involved in the maturation of [NiFe] hydrogenases. Required for nickel insertion into the metal center of the hydrogenase. (133 aa) | ||||
EO98_07680 | Hydrogenase expression protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (348 aa) | ||||
rpoD | DNA-directed RNA polymerase subunit D; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (266 aa) | ||||
rps11 | 30S ribosomal protein S11; Located on the platform of the 30S subunit. Belongs to the universal ribosomal protein uS11 family. (126 aa) | ||||
rps4 | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (221 aa) | ||||
rps13 | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement; Belongs to the universal ribosomal protein uS13 family. (162 aa) | ||||
truB | H/ACA RNA-protein complex component Cbf5p; Could be responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 2 subfamily. (338 aa) | ||||
EO98_08095 | tRNA-ribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (625 aa) | ||||
EO98_08105 | GNAT family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (177 aa) | ||||
rtcA | Ribosomal subunit interface protein; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing. (355 aa) | ||||
kptA | RNA 2'-phosphotransferase; Removes the 2'-phosphate from RNA via an intermediate in which the phosphate is ADP-ribosylated by NAD followed by a presumed transesterification to release the RNA and generate ADP-ribose 1''-2''- cyclic phosphate (APPR>P). May function as an ADP-ribosylase. (207 aa) | ||||
EO98_08195 | Elongation factor Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa) | ||||
rpoH | DNA-directed RNA polymerase subunit H; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoH/eukaryotic RPB5 RNA polymerase subunit family. (78 aa) | ||||
EO98_08825 | DNA-directed RNA polymerase subunit B; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. The beta subunit is part of the catalytic core which binds with a sigma factor to produce the holoenzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (531 aa) | ||||
EO98_08830 | DNA-directed RNA polymerase subunit B; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (604 aa) | ||||
EO98_08835 | DNA-directed RNA polymerase subunit A; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (880 aa) | ||||
rpoA2 | DNA-directed RNA polymerase subunit A'; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (399 aa) | ||||
rpl30e | 50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL30 family. (96 aa) | ||||
nusA | Transcription elongation factor NusA; Participates in transcription termination. Belongs to the NusA family. (141 aa) | ||||
rps12 | 30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits. Belongs to the universal ribosomal protein uS12 family. (142 aa) | ||||
rps7 | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center; Belongs to the universal ribosomal protein uS7 family. (186 aa) | ||||
fusA | Elongation factor EF-2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (730 aa) | ||||
tuf | Elongation factor 1-alpha; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-Tu/EF-1A subfamily. (422 aa) | ||||
rps10p | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa) | ||||
csl4 | RNA-binding protein; Non-catalytic component of the exosome, which is a complex involved in RNA degradation. Increases the RNA binding and the efficiency of RNA degradation. Helpful for the interaction of the exosome with A-poor RNAs. (328 aa) | ||||
rpoL | DNA-directed RNA polymerase subunit L; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoL/eukaryotic RPB11/RPC19 RNA polymerase subunit family. (92 aa) | ||||
EO98_09195 | Sep-tRNA:Cys-tRNA ligase; Converts O-phospho-L-seryl-tRNA(Cys) (Sep-tRNA(Cys)) to L- cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)); Belongs to the SepCysS family. (386 aa) | ||||
EO98_09220 | Phenylacetic acid degradation protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (135 aa) | ||||
EO98_09235 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (146 aa) | ||||
cysS | cysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa) | ||||
lysS-2 | lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (511 aa) | ||||
EO98_09410 | Translation initiation factor Sui1; In yeast this protein is involved in start site selection during the initiation of translation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SUI1 family. (102 aa) | ||||
serS-2 | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (421 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (711 aa) | ||||
eif5a | Translation initiation factor 5A; Functions by promoting the formation of the first peptide bond; Belongs to the eIF-5A family. (128 aa) | ||||
rpl40e | 50S ribosomal protein L40; Contains a zinc-finger motif; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL40 family. (49 aa) | ||||
EO98_10250 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (99 aa) | ||||
EO98_10260 | Sulfur reduction protein DsrE; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (480 aa) | ||||
EO98_10380 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (161 aa) | ||||
tfe | Transcription factor; Transcription factor that plays a role in the activation of archaeal genes transcribed by RNA polymerase. Facilitates transcription initiation by enhancing TATA-box recognition by TATA-box-binding protein (Tbp), and transcription factor B (Tfb) and RNA polymerase recruitment. Not absolutely required for transcription in vitro, but particularly important in cases where Tbp or Tfb function is not optimal. It dynamically alters the nucleic acid-binding properties of RNA polymerases by stabilizing the initiation complex and destabilizing elongation complexes. Seems to [...] (164 aa) | ||||
rpl3 | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (337 aa) | ||||
rpl4lp | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (253 aa) | ||||
rpl23 | 50S ribosomal protein L23; Binds to 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Belongs to the universal ribosomal protein uL23 family. (82 aa) | ||||
rpl2p | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (238 aa) | ||||
rps19p | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (136 aa) | ||||
rpl22 | 50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (151 aa) | ||||
rps3 | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Belongs to the universal ribosomal protein uS3 family. (308 aa) | ||||
rpl29 | 50S ribosomal protein L29; One of the stabilizing components for the large ribosomal subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (67 aa) | ||||
rnp1 | Ribonuclease P; Part of ribonuclease P, a protein complex that generates mature tRNA molecules by cleaving their 5'-ends; Belongs to the eukaryotic/archaeal RNase P protein component 1 family. (110 aa) | ||||
rps17 | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (109 aa) | ||||
rpl14 | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (132 aa) | ||||
rpl24p | 50S ribosomal protein L24; Located at the polypeptide exit tunnel on the outside of the subunit. (116 aa) | ||||
rps4e | Hypothetical protein; The function of this ribosomal subunit is unknown; Derived by automated computational analysis using gene prediction method: Protein Homology. (235 aa) | ||||
rpl5 | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. May contact the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (169 aa) | ||||
rps14 | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles. (50 aa) | ||||
rps8 | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa) | ||||
rpl6 | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (172 aa) | ||||
rpl32e | 50S ribosomal protein L32; Contacts helix 25 of domain II of the 23S rRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL32 family. (146 aa) | ||||
rpl19e | 50S ribosomal protein L19; Binds to the 23S rRNA; Belongs to the eukaryotic ribosomal protein eL19 family. (151 aa) | ||||
rpl18 | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (174 aa) | ||||
rps5 | 30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy. (209 aa) | ||||
rpl30p | 50S ribosomal protein L30; L30 binds domain II of the 23S rRNA and the 5S rRNA; similar to eukaryotic protein L7; Derived by automated computational analysis using gene prediction method: Protein Homology. (153 aa) | ||||
rpl15 | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (140 aa) | ||||
gatE | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (633 aa) | ||||
rps19e | 30S ribosomal protein S19; May be involved in maturation of the 30S ribosomal subunit. Belongs to the eukaryotic ribosomal protein eS19 family. (149 aa) | ||||
rpl31e | 50S ribosomal protein L31; One of the proteins encircling the polypeptide exit tunnel in the ribozyme; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribosomal protein L31e family. (89 aa) | ||||
eif6 | Translation initiation factor IF-6; Binds to the 50S ribosomal subunit and prevents its association with the 30S ribosomal subunit to form the 70S initiation complex. (219 aa) | ||||
rpl18a | 50S ribosomal protein LX; Derived by automated computational analysis using gene prediction method: Protein Homology. (58 aa) | ||||
EO98_11110 | Cobalamin biosynthesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
EO98_11240 | Queuine tRNA-ribosyltransferase containing PUA domain protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (227 aa) | ||||
rps8e | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (125 aa) | ||||
hisS | histidyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (413 aa) | ||||
rps15 | 30S ribosomal protein S15; Derived by automated computational analysis using gene prediction method: Protein Homology. (152 aa) | ||||
EO98_11530 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (597 aa) | ||||
EO98_11655 | CAAX protease; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa) | ||||
truA | Pseudouridine synthase; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs; Belongs to the tRNA pseudouridine synthase TruA family. (269 aa) | ||||
EO98_11915 | RNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (354 aa) | ||||
EO98_12075 | GNAT family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (153 aa) | ||||
EO98_12195 | Archease; Activates the tRNA-splicing ligase complex by facilitating the enzymatic turnover of catalytic subunit RtcB. Acts by promoting the guanylylation of RtcB, a key intermediate step in tRNA ligation. Can also alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. (146 aa) | ||||
rtcB | tRNA-splicing ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the RtcB family. (500 aa) | ||||
rnp4 | Ribonuclease P; Part of ribonuclease P, a protein complex that generates mature tRNA molecules by cleaving their 5'-ends. (107 aa) | ||||
flpA | Fibrillin; Involved in pre-rRNA and tRNA processing. Utilizes the methyl donor S-adenosyl-L-methionine to catalyze the site-specific 2'-hydroxyl methylation of ribose moieties in rRNA and tRNA. Site specificity is provided by a guide RNA that base pairs with the substrate. Methylation occurs at a characteristic distance from the sequence involved in base pairing with the guide RNA; Belongs to the methyltransferase superfamily. Fibrillarin family. (227 aa) | ||||
EO98_12580 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (156 aa) | ||||
EO98_12625 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the LarC family. (396 aa) | ||||
EO98_13035 | CAAX protease; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa) | ||||
EO98_13415 | RNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (252 aa) | ||||
tgtA | 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs; Belongs to the archaeosine tRNA-ribosyltransferase family. (490 aa) | ||||
EO98_14005 | GTP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa) | ||||
EO98_14070 | Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (151 aa) | ||||
tbp | Transcription factor; General factor that plays a role in the activation of archaeal genes transcribed by RNA polymerase. Binds specifically to the TATA box promoter element which lies close to the position of transcription initiation. (183 aa) | ||||
EO98_14160 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (413 aa) | ||||
rpl12p | 50S ribosomal protein L12; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the eukaryotic ribosomal protein P1/P2 family. (102 aa) | ||||
rplP0 | Acidic ribosomal protein P0; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (344 aa) | ||||
rpl1 | 50S ribosomal protein L1; Binds directly to 23S rRNA. Probably involved in E site tRNA release. (213 aa) | ||||
rpl11 | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors; Belongs to the universal ribosomal protein uL11 family. (161 aa) | ||||
nusG | Transcription antiterminator NusG; Stimulates transcription elongation; Belongs to the archaeal Spt5 family. (152 aa) | ||||
EO98_14820 | Phycocyanin alpha phycocyanobilin lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (457 aa) | ||||
aspC | aspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn). (444 aa) | ||||
EO98_14935 | ACT domain-containing protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0237 family. (92 aa) | ||||
EO98_14955 | tRNA 2'-O-methylase; Specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of cytidine at position 56 in tRNAs; Belongs to the aTrm56 family. (177 aa) | ||||
EO98_15070 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (411 aa) | ||||
EO98_15155 | Methionine-10+; Derived by automated computational analysis using gene prediction method: Protein Homology. (331 aa) | ||||
EO98_15300 | Hypothetical protein; Probable pre-rRNA processing protein involved in ribosome biogenesis; Belongs to the TSR3 family. (173 aa) | ||||
pheT | phenylalanine--tRNA ligase; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 1 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology. (545 aa) | ||||
EO98_15635 | Small nuclear ribonucleoprotein; Enables 3` processing of polyadenylated mRNAs and tRNA precursors; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the snRNP Sm proteins family. (72 aa) | ||||
EO98_15675 | ATPase; Originally found to be an inhibitor of the antiviral RNase-L in human cells; contains ABC-type nucleotide binding domains; putatively functions in RNA maturation; Derived by automated computational analysis using gene prediction method: Protein Homology. (588 aa) | ||||
tiaS | tRNA(Ile2) 2-agmatinylcytidine synthetase; ATP-dependent agmatine transferase that catalyzes the formation of 2-agmatinylcytidine (agm2C) at the wobble position (C34) of tRNA(Ile2), converting the codon specificity from AUG to AUA. (428 aa) | ||||
cca | CCA-adding protein; Catalyzes the addition and repair of the essential 3'- terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate. (454 aa) | ||||
EO98_16105 | Phycocyanin alpha phycocyanobilin lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (491 aa) | ||||
EO98_16195 | Abortive infection protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (269 aa) | ||||
EO98_16210 | Phycocyanin subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1143 aa) | ||||
endA | Ribonuclease BN; Endonuclease that removes tRNA introns. Cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. Recognizes a pseudosymmetric substrate in which 2 bulged loops of 3 bases are separated by a stem of 4 bp. (350 aa) | ||||
EO98_16480 | GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (189 aa) | ||||
EO98_16485 | GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (189 aa) | ||||
EO98_16535 | alpha-L-glutamate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa) | ||||
EO98_16900 | LSM domain-containing protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (74 aa) | ||||
EO98_16905 | AsnC family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (133 aa) | ||||
eif1a-2 | Translation initiation factor 1A; Seems to be required for maximal rate of protein biosynthesis. Enhances ribosome dissociation into subunits and stabilizes the binding of the initiator Met-tRNA(I) to 40 S ribosomal subunits. (110 aa) | ||||
eif1a-3 | Translation initiation factor 1A; Seems to be required for maximal rate of protein biosynthesis. Enhances ribosome dissociation into subunits and stabilizes the binding of the initiator Met-tRNA(I) to 40 S ribosomal subunits. (107 aa) | ||||
gatD | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (424 aa) | ||||
rrmJ | 23S rRNA methyltransferase; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (278 aa) | ||||
EO98_17305 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa) | ||||
thrS | threonine--tRNA ligase; Catalyzes the formation of threonyl-tRNA(Thr) from threonine and tRNA(Thr); catalyzes a two-step reaction, first charging a threonine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (635 aa) | ||||
eif1a-4 | Translation initiation factor 1A; Seems to be required for maximal rate of protein biosynthesis. Enhances ribosome dissociation into subunits and stabilizes the binding of the initiator Met-tRNA(I) to 40 S ribosomal subunits. (110 aa) | ||||
EO98_17770 | Beta-lactamase; Derived by automated computational analysis using gene prediction method: Protein Homology. (481 aa) | ||||
ef1B | Elongation factor 1-beta; Promotes the exchange of GDP for GTP in EF-1-alpha/GDP, thus allowing the regeneration of EF-1-alpha/GTP that could then be used to form the ternary complex EF-1-alpha/GTP/AAtRNA. (89 aa) | ||||
thiI | tRNA sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (412 aa) | ||||
trm1 | tRNA (guanine-N2)-dimethyltransferase; Dimethylates a single guanine residue at position 26 of a number of tRNAs using S-adenosyl-L-methionine as donor of the methyl groups; Belongs to the class I-like SAM-binding methyltransferase superfamily. Trm1 family. (388 aa) | ||||
trmY | tRNA (pseudouridine-N1)-methyltransferase; Specifically catalyzes the N1-methylation of pseudouridine at position 54 (Psi54) in tRNAs; Belongs to the methyltransferase superfamily. TrmY family. (211 aa) | ||||
pus10 | Pseudouridine synthase; Responsible for synthesis of pseudouridine from uracil-54 and uracil-55 in the psi GC loop of transfer RNAs. (431 aa) | ||||
rpl21e | 50S ribosomal protein L21; Mediates an interaction between 5S and domains II and V of 23S; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the eukaryotic ribosomal protein eL21 family. (97 aa) | ||||
EO98_18400 | DNA-directed RNA polymerase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. (117 aa) | ||||
rsmA | 16S rRNA methyltransferase; Specifically dimethylates two adjacent adenosines in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. Belongs to the class I-like SAM-binding methyltransferase superfamily. rRNA adenine N(6)-methyltransferase family. RsmA subfamily. (269 aa) | ||||
EO98_18690 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (1928 aa) | ||||
EO98_19050 | Arylsulfatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (251 aa) | ||||
EO98_19260 | O-phospho-L-seryl-tRNA:Cys-tRNA synthase; Converts O-phospho-L-seryl-tRNA(Cys) (Sep-tRNA(Cys)) to L- cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)); Belongs to the SepCysS family. (454 aa) |