STRINGSTRING
rpoK rpoK rpoN rpoN spt4 spt4 EO98_06690 EO98_06690 rpoD rpoD rpoH rpoH EO98_08825 EO98_08825 EO98_08830 EO98_08830 EO98_08835 EO98_08835 rpoA2 rpoA2 rpoL rpoL EO98_18400 EO98_18400
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpoKDNA-directed RNA polymerase subunit K; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoK/eukaryotic RPB6 RNA polymerase subunit family. (60 aa)
rpoNDNA-directed RNA polymerase subunit N; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoN/eukaryotic RPB10 RNA polymerase subunit family. (62 aa)
spt4DNA-directed RNA polymerase subunit E; Stimulates transcription elongation; Belongs to the archaeal Spt4 family. (61 aa)
EO98_06690DNA-directed RNA polymerase subunit E; Participates in both the initiation and recycling phases of transcription; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa)
rpoDDNA-directed RNA polymerase subunit D; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (266 aa)
rpoHDNA-directed RNA polymerase subunit H; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoH/eukaryotic RPB5 RNA polymerase subunit family. (78 aa)
EO98_08825DNA-directed RNA polymerase subunit B; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. The beta subunit is part of the catalytic core which binds with a sigma factor to produce the holoenzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (531 aa)
EO98_08830DNA-directed RNA polymerase subunit B; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (604 aa)
EO98_08835DNA-directed RNA polymerase subunit A; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (880 aa)
rpoA2DNA-directed RNA polymerase subunit A'; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (399 aa)
rpoLDNA-directed RNA polymerase subunit L; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoL/eukaryotic RPB11/RPC19 RNA polymerase subunit family. (92 aa)
EO98_18400DNA-directed RNA polymerase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. (117 aa)
Your Current Organism:
Methanosarcina sp. 2HT1A6
NCBI taxonomy Id: 1483599
Other names: M. sp. 2.H.T.1A.6, Methanosarcina sp. 2.H.T.1A.6
Server load: low (36%) [HD]