STRINGSTRING
ilvD ilvD metH metH rplI rplI uvrB_2 uvrB_2 uvrA uvrA pyk_3 pyk_3 cheB_2-2 cheB_2-2 leuS leuS gyrB gyrB cheB_2 cheB_2 flhA flhA hflX hflX ilvD_2 ilvD_2 gatB gatB hcp-3 hcp-3 rps1 rps1 hfq hfq pepA pepA glyA glyA asd_1 asd_1 trpF trpF trpD trpD efp efp dapF dapF rpsD rpsD metG metG mfd mfd AJG96840.1 AJG96840.1 nusG nusG rplK rplK rplA rplA rplJ rplJ rpoB rpoB rpoC rpoC rpsG rpsG rplB rplB rpsS rpsS rplV rplV rpsC rpsC rpsQ rpsQ rplN rplN rplE rplE rpsM rpsM rpsD_1 rpsD_1 rplM rplM rpsI rpsI leuC leuC ilvC_2 ilvC_2 groS groS groEL groEL pgi pgi rho rho rpmE rpmE atpH atpH atpA atpA atpG atpG AJG97225.1 AJG97225.1 pgk pgk eno eno rnr rnr clpB clpB hcp hcp polA polA hrcA hrcA grpE grpE dnaK dnaK dnaJ dnaJ era era ctc ctc AJG97680.1 AJG97680.1 AJG97682.1 AJG97682.1 argS argS AJG97861.1 AJG97861.1 rlmN rlmN tsf tsf dxr dxr ispG ispG rimP rimP infB infB rimO_1 rimO_1 hisA hisA tig tig AJG98105.1 AJG98105.1 hcp-2 hcp-2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ilvDDihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (556 aa)
metHhistidine--tRNA ligase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1213 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (148 aa)
uvrB_2Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (657 aa)
uvrAABC-ATPase UvrA; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (941 aa)
pyk_3Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa)
cheB_2-2Chemotaxis response regulator protein-glutamate methylesterase; Involved in chemotaxis. Part of a chemotaxis signal transduction system that modulates chemotaxis in response to various stimuli. Catalyzes the demethylation of specific methylglutamate residues introduced into the chemoreceptors (methyl-accepting chemotaxis proteins or MCP) by CheR. Also mediates the irreversible deamidation of specific glutamine residues to glutamic acid. Belongs to the CheB family. (341 aa)
leuSleucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (816 aa)
gyrBNegatively supercoils closed circular double-stranded DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (649 aa)
cheB_2Chemotaxis response regulator protein-glutamate methylesterase; Involved in chemotaxis. Part of a chemotaxis signal transduction system that modulates chemotaxis in response to various stimuli. Catalyzes the demethylation of specific methylglutamate residues introduced into the chemoreceptors (methyl-accepting chemotaxis proteins or MCP) by CheR. Also mediates the irreversible deamidation of specific glutamine residues to glutamic acid. Belongs to the CheB family. (368 aa)
flhAEscV/YscV/HrcV family type III secretion system export apparatus protein; Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin; Belongs to the FHIPEP (flagella/HR/invasion proteins export pore) family. (688 aa)
hflXGTP-binding protein; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. (596 aa)
ilvD_2Dihydroxy-acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (571 aa)
gatBglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (479 aa)
hcp-3Hydroxylamine reductase; Catalyzes the reduction of hydroxylamine to form NH(3) and H(2)O. (548 aa)
rps14-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. (635 aa)
hfqRNA chaperone Hfq; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs. Belongs to the Hfq family. (81 aa)
pepAAminopeptidase; Presumably involved in the processing and regular turnover of intracellular proteins. Catalyzes the removal of unsubstituted N- terminal amino acids from various peptides. (489 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (411 aa)
asd_1Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (330 aa)
trpFN-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (229 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (338 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (185 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (275 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (198 aa)
metGmethionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (645 aa)
mfdTranscription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1166 aa)
AJG96840.1DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (458 aa)
nusGTranscription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (173 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (229 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (167 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1236 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1178 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (277 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (90 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (111 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (221 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (122 aa)
rpsD_130S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (144 aa)
rpsI30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (130 aa)
leuC3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (419 aa)
ilvC_2Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (334 aa)
groSCo-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (94 aa)
groELMolecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (541 aa)
pgiGlucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (449 aa)
rhoTranscription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (480 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (69 aa)
atpHATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (179 aa)
atpAATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (504 aa)
atpGF0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (283 aa)
AJG97225.1Aspartate-semialdehyde dehydrogenase; Catalyzes the formation of aspartate semialdehyde from aspartyl phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate-semialdehyde dehydrogenase family. (361 aa)
pgkPhosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (391 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (430 aa)
rnrRibonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (735 aa)
clpBATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (863 aa)
hcpHydroxylamine reductase; Catalyzes the reduction of hydroxylamine to form NH(3) and H(2)O. (545 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. (867 aa)
hrcAHeat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. (342 aa)
grpEMolecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (207 aa)
dnaKMolecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (614 aa)
dnaJMolecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (377 aa)
eraGTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (298 aa)
ctc50S ribosomal protein L25/general stress protein Ctc; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (189 aa)
AJG97680.1Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (743 aa)
AJG97682.1Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (743 aa)
argSarginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AJG97861.1Laccase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the multicopper oxidase YfiH/RL5 family. (246 aa)
rlmN23S rRNA (adenine(2503)-C2)-methyltransferase; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs; Belongs to the radical SAM superfamily. RlmN family. (353 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (305 aa)
dxr1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (387 aa)
ispG4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (359 aa)
rimPRibosome maturation factor RimP; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (152 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (695 aa)
rimO_1Ribosomal protein S12 methylthiotransferase RimO; Catalyzes the methylthiolation of an aspartic acid residue of ribosomal protein S12; Belongs to the methylthiotransferase family. RimO subfamily. (465 aa)
hisA1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (240 aa)
tigTrigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (427 aa)
AJG98105.1Methionine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (227 aa)
hcp-2Hydroxylamine reductase; Catalyzes the reduction of hydroxylamine to form NH(3) and H(2)O. (567 aa)
Your Current Organism:
Clostridium beijerinckii
NCBI taxonomy Id: 1520
Other names: ATCC 25752, BCRC 14488, C. beijerinckii, CCUG 56442, CIP 104308, Clostridium rubrum, Clostridium sp. H18, DSM 791, LMG 5716, LMG:5716, NCIMB 9362, NCTC 13035
Server load: low (28%) [HD]