STRINGSTRING
porC porC porA porA ALE18487.1 ALE18487.1 sfrB sfrB leuD leuD leuC leuC leuB leuB ilvC ilvC ilvH ilvH ilvB1 ilvB1 ilvD ilvD ackA ackA ALE18885.1 ALE18885.1 ALE18995.1 ALE18995.1 ALE19065.1 ALE19065.1 pckG pckG ALE19089.1 ALE19089.1 pckG-2 pckG-2 leuA leuA ilvE ilvE ilvA ilvA ALE19467.1 ALE19467.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
porC2-oxoacid:acceptor oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa)
porAPyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (426 aa)
ALE18487.1Pyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa)
sfrBGlutamate synthase; Unknown function; Derived by automated computational analysis using gene prediction method: Protein Homology. (552 aa)
leuDIsopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (195 aa)
leuCIsopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (480 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 2 subfamily. (338 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (337 aa)
ilvHAcetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (167 aa)
ilvB1Acetolactate synthase large subunit; catalyzes the formation of 2-acetolactate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (620 aa)
ilvDDihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (614 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (398 aa)
ALE18885.1Hypothetical protein; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (711 aa)
ALE18995.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (613 aa)
ALE19065.1acetyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (672 aa)
pckGPhosphoenolpyruvate carboxykinase; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. (619 aa)
ALE19089.1Pyruvate dehydrogenase; Catalyzes the formation of acetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (587 aa)
pckG-2Phosphoenolpyruvate carboxykinase; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family. (608 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (605 aa)
ilvECatalyzes the transamination of the branched-chain amino acids to their respective alpha-keto acids; Derived by automated computational analysis using gene prediction method: Protein Homology. (367 aa)
ilvAThreonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (428 aa)
ALE19467.1Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (472 aa)
Your Current Organism:
Lawsonella clevelandensis
NCBI taxonomy Id: 1528099
Other names: CCUG 66657, Corynebacteriales bacterium CCF1, Corynebacteriales bacterium CCF2, Corynebacteriales bacterium X1036, Corynebacteriales bacterium X1698, Corynebacterineae bacterium NML 120705, Corynebacterineae bacterium X1698, DSM 45743, L. clevelandensis, Lawsonella clevelandensis Bell et al. 2016, bacterium CCF-01, strain X1036
Server load: low (26%) [HD]