STRINGSTRING
hisG hisG hisE hisE hisC hisC pheA pheA trpE trpE pabA pabA trpD trpD trpB trpB trpA trpA ALE19248.1 ALE19248.1 pabB pabB serB2 serB2 hisD hisD hisC-2 hisC-2 hisB hisB hisH hisH hisA hisA hisF hisF hisI hisI trpC trpC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily. (286 aa)
hisEphosphoribosyl-ATP pyrophosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribolsyl)-ATP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PRA-PH family. (87 aa)
hisCHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (364 aa)
pheAPrephenate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa)
trpEAnthranilate synthase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa)
pabAHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (235 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (340 aa)
trpBPhosphoribosylanthranilate isomerase; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (376 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (259 aa)
ALE19248.1Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (439 aa)
pabBHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (874 aa)
serB2Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (401 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (446 aa)
hisC-2Histidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (368 aa)
hisBImidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
hisHHypothetical protein; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (225 aa)
hisAPhosphoribosyl isomerase; Catalyzes the formation of 5-(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino-l- (5-phosphoribosyl)imidazole-4-carboxamide from 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide and the formation of 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate from N-(5-phospho-beta-D-ribosyl)anthranilate; involved in histidine and tryptophan biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa)
hisFImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (257 aa)
hisIHypothetical protein; Catalyzes the hydrolysis of the adenine ring of phosphoribosyl-AMP. (134 aa)
trpCIndole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (269 aa)
Your Current Organism:
Lawsonella clevelandensis
NCBI taxonomy Id: 1528099
Other names: CCUG 66657, Corynebacteriales bacterium CCF1, Corynebacteriales bacterium CCF2, Corynebacteriales bacterium X1036, Corynebacteriales bacterium X1698, Corynebacterineae bacterium NML 120705, Corynebacterineae bacterium X1698, DSM 45743, L. clevelandensis, Lawsonella clevelandensis Bell et al. 2016, bacterium CCF-01, strain X1036
Server load: medium (42%) [HD]