STRINGSTRING
aroQ aroQ aroB aroB aroK aroK aroC aroC aroE aroE sfrB sfrB dapA dapA dapB dapB dapE_2 dapE_2 dapD dapD ALE19587.1 ALE19587.1 ask ask asd asd ALE19690.1 ALE19690.1 ALE19691.1 ALE19691.1 folK folK ALE19427.1 ALE19427.1 nadA nadA gdh gdh
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
aroQ3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (143 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (358 aa)
aroKHypothetical protein; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (183 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (398 aa)
aroEHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (271 aa)
sfrBGlutamate synthase; Unknown function; Derived by automated computational analysis using gene prediction method: Protein Homology. (552 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (301 aa)
dapBDihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (251 aa)
dapE_2Succinyl-diaminopimelate desuccinylase; Catalyzes the formation of succinate and diaminoheptanedioate from succinyldiaminoheptanedioate; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase; Catalyzes the conversion of the cyclic tetrahydrodipicolinate (THDP) into the acyclic N-succinyl-L-2-amino-6-oxopimelate using succinyl-CoA. (321 aa)
ALE19587.1Cytochrome C2; Catalyzes the reversible NADPH-dependent reductive amination of L-2-amino-6-oxopimelate, the acyclic form of L- tetrahydrodipicolinate, to generate the meso compound, D,L-2,6- diaminopimelate. (322 aa)
askAspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (421 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (350 aa)
ALE19690.1Dihydropteroate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (279 aa)
ALE19691.1Hypothetical protein; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin. (130 aa)
folKHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (181 aa)
ALE19427.1Phospho-2-dehydro-3-deoxyheptonate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II DAHP synthase family. (461 aa)
nadAQuinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (353 aa)
gdhConverts 2-oxoglutarate to glutamate; in Escherichia coli this enzyme plays a role in glutamate synthesis when the cell is under energy restriction; uses NADPH; forms a homohexamer; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (446 aa)
Your Current Organism:
Lawsonella clevelandensis
NCBI taxonomy Id: 1528099
Other names: CCUG 66657, Corynebacteriales bacterium CCF1, Corynebacteriales bacterium CCF2, Corynebacteriales bacterium X1036, Corynebacteriales bacterium X1698, Corynebacterineae bacterium NML 120705, Corynebacterineae bacterium X1698, DSM 45743, L. clevelandensis, Lawsonella clevelandensis Bell et al. 2016, bacterium CCF-01, strain X1036
Server load: low (14%) [HD]