STRINGSTRING
AIQ44633.1 AIQ44633.1 tatA tatA tatC tatC secF secF secA-2 secA-2 ftsY ftsY ffh ffh yidC yidC secF-2 secF-2 secD secD AIQ48889.1 AIQ48889.1 secY secY secE secE secA secA yidC-2 yidC-2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AIQ44633.1Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (77 aa)
tatATranslocase; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (79 aa)
tatCPreprotein translocase subunit TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. (256 aa)
secFSecD/SecF family protein-export membrane protein; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily. (739 aa)
secA-2Preprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (762 aa)
ftsYCell division protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (334 aa)
ffhSignal recognition particle; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (463 aa)
yidCOxaA-like protein precursor; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins; Belongs to the OXA1/ALB3/YidC family. Type 2 subfamily. (271 aa)
secF-2Hypothetical protein; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (292 aa)
secDHypothetical protein; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (416 aa)
AIQ48889.1Preprotein translocase subunit YajC; Derived by automated computational analysis using gene prediction method: Protein Homology. (101 aa)
secYPreprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (432 aa)
secEPreprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (63 aa)
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (835 aa)
yidC-2Membrane protein; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins; Belongs to the OXA1/ALB3/YidC family. Type 2 subfamily. (300 aa)
Your Current Organism:
Paenibacillus sp. FSLR70273
NCBI taxonomy Id: 1536772
Other names: P. sp. FSL R7-0273, Paenibacillus sp. FSL R7-0273
Server load: low (20%) [HD]