Your Input: | |||||
AIM35354.1 | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. (328 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (126 aa) | ||||
gcvT | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (360 aa) | ||||
gcvP | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (957 aa) | ||||
pdhA | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (331 aa) | ||||
AIM35629.1 | Pyruvate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (542 aa) | ||||
lipA | Lipoyl synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (293 aa) | ||||
AIM35878.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (462 aa) | ||||
AIM35881.1 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (468 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (423 aa) | ||||
AIM36012.1 | Diapophytoene dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (461 aa) | ||||
AIM36287.1 | 2-oxoglutarate dehydrogenase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (409 aa) | ||||
AIM36288.1 | 2-oxoglutarate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (912 aa) | ||||
folD | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (295 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (305 aa) | ||||
gcvH-2 | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (125 aa) | ||||
AIM37906.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (804 aa) | ||||
AIM38155.1 | Lipoate--protein ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (327 aa) | ||||
lipB | Octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. (232 aa) |