STRINGSTRING
AIT07068.1 AIT07068.1 atpF atpF atpF-2 atpF-2 atpB atpB atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH AIT07055.1 AIT07055.1 AIT07056.1 AIT07056.1 fliI fliI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AIT07068.1Biopolymer transporter ExbB; Derived by automated computational analysis using gene prediction method: Protein Homology. (215 aa)
atpFATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (210 aa)
atpF-2ATPase; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa)
atpBATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (263 aa)
atpCATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane; the epsilon subunit is part of the catalytic core of the ATP synthase complex; Derived by automated computational analysis using gene prediction method: Protein Homology. (83 aa)
atpDATP synthase F0F1 subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (493 aa)
atpGATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (294 aa)
atpAATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (509 aa)
atpHATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (185 aa)
AIT07055.1Flagellar motor protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa)
AIT07056.1Flagellar motor protein MotA; With MotB forms the ion channels that couple flagellar rotation to proton/sodium motive force across the membrane and forms the stator elements of the rotary flagellar machine; Derived by automated computational analysis using gene prediction method: Protein Homology. (287 aa)
fliIATP synthase; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (442 aa)
Your Current Organism:
Sphingomonas taxi
NCBI taxonomy Id: 1549858
Other names: ATCC 55669, Erwinia taxi, S. taxi, strain STJ.EPI.H7
Server load: low (24%) [HD]