STRINGSTRING
dld dld poxB poxB nuoN nuoN nuoM nuoM nuoK nuoK nuoJ nuoJ nuoI nuoI nuoH nuoH nuoG nuoG nuoF nuoF nuoC nuoC nuoB nuoB nuoA nuoA hyfG hyfG hyfI hyfI ratA ratA hycG hycG hycE hycE gcd gcd
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dldD-lactate dehydrogenase, FAD protein, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (571 aa)
poxBPyruvate oxidase; Residues 1 to 572 of 572 are 99.47 pct identical to residues 1 to 572 of 572 from Escherichia coli K-12 Strain MG1655: B0871; Belongs to the TPP enzyme family. (572 aa)
nuoNNADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (425 aa)
nuoMNADH dehydrogenase I chain M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (509 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoJNADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 6 family. (184 aa)
nuoINADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
nuoHNADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa)
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (910 aa)
nuoFNADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (445 aa)
nuoCNADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (600 aa)
nuoBNADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa)
nuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa)
hyfGHydrogenase 4 subunit; Residues 1 to 571 of 571 are 96.84 pct identical to residues 1 to 555 of 555 from Escherichia coli K-12 Strain MG1655: B2487. (571 aa)
hyfIHydrogenase 4 Fe-S subunit; Residues 1 to 252 of 252 are 99.20 pct identical to residues 1 to 252 of 252 from Escherichia coli K-12 Strain MG1655: B2489. (252 aa)
ratAOrf, hypothetical protein; Residues 1 to 158 of 158 are 99.36 pct identical to residues 1 to 158 of 158 from Escherichia coli K-12 Strain MG1655: B2619. (158 aa)
hycGHydrogenase activity; Residues 1 to 255 of 255 are 99.60 pct identical to residues 1 to 255 of 255 from Escherichia coli K-12 Strain MG1655: B2719. (255 aa)
hycELarge subunit of hydrogenase 3 (part of FHL complex); Residues 1 to 569 of 569 are 99.82 pct identical to residues 1 to 569 of 569 from Escherichia coli K-12 Strain MG1655: B2721. (569 aa)
gcdGlucose dehydrogenase; Residues 1 to 796 of 796 are 99.87 pct identical to residues 1 to 796 of 796 from Escherichia coli K-12 Strain MG1655: B0124. (796 aa)
Your Current Organism:
Escherichia coli O157H7 EDL933
NCBI taxonomy Id: 155864
Other names: E. coli O157:H7 str. EDL933, Escherichia coli O157:H7 EDL933, Escherichia coli O157:H7 str. EDL933, Escherichia coli O157:H7 strain EDL933
Server load: low (18%) [HD]