Your Input: | |||||
dld | D-lactate dehydrogenase, FAD protein, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (571 aa) | ||||
poxB | Pyruvate oxidase; Residues 1 to 572 of 572 are 99.47 pct identical to residues 1 to 572 of 572 from Escherichia coli K-12 Strain MG1655: B0871; Belongs to the TPP enzyme family. (572 aa) | ||||
nuoN | NADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (425 aa) | ||||
nuoM | NADH dehydrogenase I chain M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (509 aa) | ||||
nuoK | NADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) | ||||
nuoJ | NADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 6 family. (184 aa) | ||||
nuoI | NADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa) | ||||
nuoH | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa) | ||||
nuoG | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (910 aa) | ||||
nuoF | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (445 aa) | ||||
nuoC | NADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (600 aa) | ||||
nuoB | NADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa) | ||||
nuoA | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa) | ||||
hyfG | Hydrogenase 4 subunit; Residues 1 to 571 of 571 are 96.84 pct identical to residues 1 to 555 of 555 from Escherichia coli K-12 Strain MG1655: B2487. (571 aa) | ||||
hyfI | Hydrogenase 4 Fe-S subunit; Residues 1 to 252 of 252 are 99.20 pct identical to residues 1 to 252 of 252 from Escherichia coli K-12 Strain MG1655: B2489. (252 aa) | ||||
ratA | Orf, hypothetical protein; Residues 1 to 158 of 158 are 99.36 pct identical to residues 1 to 158 of 158 from Escherichia coli K-12 Strain MG1655: B2619. (158 aa) | ||||
hycG | Hydrogenase activity; Residues 1 to 255 of 255 are 99.60 pct identical to residues 1 to 255 of 255 from Escherichia coli K-12 Strain MG1655: B2719. (255 aa) | ||||
hycE | Large subunit of hydrogenase 3 (part of FHL complex); Residues 1 to 569 of 569 are 99.82 pct identical to residues 1 to 569 of 569 from Escherichia coli K-12 Strain MG1655: B2721. (569 aa) | ||||
gcd | Glucose dehydrogenase; Residues 1 to 796 of 796 are 99.87 pct identical to residues 1 to 796 of 796 from Escherichia coli K-12 Strain MG1655: B0124. (796 aa) |