Your Input: | |||||
cyoE | Protoheme IX farnesyltransferase (haeme O biosynthesis); Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (296 aa) | ||||
cyoD | Cytochrome o ubiquinol oxidase subunit IV; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron (By similarity). (109 aa) | ||||
cyoC | Cytochrome o ubiquinol oxidase subunit III; Residues 1 to 204 of 204 are 99.50 pct identical to residues 1 to 204 of 204 from Escherichia coli K-12 Strain MG1655: B0430. (204 aa) | ||||
cyoB | Cytochrome o ubiquinol oxidase subunit I; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron (By similarity). (663 aa) | ||||
cyoA | Cytochrome o ubiquinol oxidase subunit II; Residues 1 to 315 of 315 are 99.04 pct identical to residues 1 to 315 of 315 from Escherichia coli K-12 Strain MG1655: B0432. (315 aa) | ||||
sdhC | Succinate dehydrogenase, cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). Belongs to the cytochrome b560 family. (129 aa) | ||||
sdhD | Succinate dehydrogenase, hydrophobic subunit; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa) | ||||
sdhA | Succinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa) | ||||
sdhB | Succinate dehydrogenase, iron sulfur protein; Residues 1 to 238 of 238 are 99.57 pct identical to residues 1 to 238 of 238 from Escherichia coli K-12 Strain MG1655: B0724; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (238 aa) | ||||
cydA | Cytochrome d terminal oxidase, polypeptide subunit I; Residues 1 to 523 of 523 are 100.00 pct identical to residues 1 to 523 of 523 from Escherichia coli K-12 Strain MG1655: B0733. (523 aa) | ||||
cydB | Cytochrome d terminal oxidase polypeptide subunit II; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (379 aa) | ||||
appC | Probable third cytochrome oxidase, subunit I; Residues 1 to 514 of 514 are 99.22 pct identical to residues 1 to 514 of 514 from Escherichia coli K-12 Strain MG1655: B0978. (514 aa) | ||||
appB | Probable third cytochrome oxidase, subunit II; Residues 1 to 378 of 378 are 99.47 pct identical to residues 1 to 378 of 378 from Escherichia coli K-12 Strain MG1655: B0979. (378 aa) | ||||
ndh | Respiratory NADH dehydrogenase; Residues 1 to 434 of 434 are 99.30 pct identical to residues 1 to 434 of 434 from Escherichia coli K-12 Strain MG1655: B1109. (434 aa) | ||||
nuoN | NADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (425 aa) | ||||
nuoM | NADH dehydrogenase I chain M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (509 aa) | ||||
nuoL | NADH dehydrogenase I chain L; Residues 1 to 613 of 613 are 99.83 pct identical to residues 1 to 613 of 613 from Escherichia coli K-12 Strain MG1655: B2278. (613 aa) | ||||
nuoK | NADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) | ||||
nuoJ | NADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 6 family. (184 aa) | ||||
nuoI | NADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa) | ||||
nuoH | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa) | ||||
nuoG | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (910 aa) | ||||
nuoF | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (445 aa) | ||||
nuoE | NADH dehydrogenase I chain E; Residues 1 to 166 of 166 are 99.39 pct identical to residues 1 to 166 of 166 from Escherichia coli K-12 Strain MG1655: B2285. (166 aa) | ||||
nuoC | NADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (600 aa) | ||||
nuoB | NADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa) | ||||
nuoA | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa) | ||||
ppk | Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP); Belongs to the polyphosphate kinase 1 (PPK1) family. (688 aa) | ||||
atpC | Membrane-bound ATP synthase, F1 sector, epsilon-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa) | ||||
atpD | Membrane-bound ATP synthase, F1 sector, beta-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (460 aa) | ||||
atpG | Membrane-bound ATP synthase, F1 sector, gamma-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (By similarity). (287 aa) | ||||
atpA | Membrane-bound ATP synthase, F1 sector, alpha-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (513 aa) | ||||
atpH | Membrane-bound ATP synthase, F1 sector, delta-subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa) | ||||
atpF | Membrane-bound ATP synthase, F0 sector, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa) | ||||
atpE | Membrane-bound ATP synthase, F0 sector, subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa) | ||||
atpB | Membrane-bound ATP synthase, F0 sector, subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (271 aa) | ||||
frdD | Fumarate reductase, anaerobic, membrane anchor polypeptide; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (119 aa) | ||||
frdC | Fumarate reductase, anaerobic, membrane anchor polypeptide; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa) | ||||
frdB | Fumarate reductase, anaerobic, iron-sulfur protein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (244 aa) | ||||
frdA | Fumarate reductase, anaerobic, flavoprotein subunit; Residues 1 to 602 of 602 are 99.83 pct identical to residues 1 to 602 of 602 from Escherichia coli K-12 Strain MG1655: B4154. (602 aa) | ||||
ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (176 aa) |