Your Input: | |||||
AOH86379.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (275 aa) | ||||
AOH82642.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (318 aa) | ||||
AOH82674.1 | Ornithine cyclodeaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (319 aa) | ||||
AOH82726.1 | Catalyzes the transamination of the branched-chain amino acids to their respective alpha-keto acids; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa) | ||||
AOH82747.1 | Prephenate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa) | ||||
AOH82750.1 | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (380 aa) | ||||
AOH86400.1 | 3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (525 aa) | ||||
AOH82751.1 | ATP phosphoribosyltransferase regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (367 aa) | ||||
AOH82782.1 | Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (420 aa) | ||||
AOH82797.1 | Dihydroxy-acid dehydratase; Catalyzes the formation of 3-methyl-2-oxobutanoate from 2,3,-dihydroxy-3-methylbutanoate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (597 aa) | ||||
AOH82819.1 | Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (441 aa) | ||||
argB | Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (299 aa) | ||||
metK | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (406 aa) | ||||
metK-2 | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (402 aa) | ||||
AOH82862.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (399 aa) | ||||
AOH82887.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the TPP enzyme family. (525 aa) | ||||
AOH82894.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the TPP enzyme family. (527 aa) | ||||
AOH82946.1 | Phenylalanine-4-hydroxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa) | ||||
AOH82958.1 | Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (485 aa) | ||||
tal | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily. (374 aa) | ||||
AOH83016.1 | Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family. (695 aa) | ||||
rpiA | Ribose-5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (226 aa) | ||||
hisG | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (220 aa) | ||||
hisD | Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (427 aa) | ||||
argH | Argininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (442 aa) | ||||
lysA | Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (420 aa) | ||||
AOH86469.1 | Histidinol phosphate phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (260 aa) | ||||
AOH83086.1 | Threonine synthase; Catalyzes the formation of L-threonine from O-phospho-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
AOH83181.1 | Phenylalanine-4-hydroxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa) | ||||
AOH83182.1 | Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (406 aa) | ||||
AOH83187.1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (459 aa) | ||||
aroC | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (359 aa) | ||||
AOH83248.1 | Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (334 aa) | ||||
AOH83254.1 | Glutamate synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1504 aa) | ||||
AOH83257.1 | Dihydropyrimidine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (480 aa) | ||||
aroE | Shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (269 aa) | ||||
AOH83483.1 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (348 aa) | ||||
AOH83484.1 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (889 aa) | ||||
argG | Argininosuccinate synthase; Catalyzes the formation of 2-N(omega)-(L-arginino)succinate from L-citrulline and L-aspartate in arginine biosynthesis, AMP-forming; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (405 aa) | ||||
dapF | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (317 aa) | ||||
AOH83517.1 | Cyclohexadienyl dehydrogenase; Dual function enzyme catalyzes the formation of 4-hydroxyphenylpyruvate from prephenate and the formation of tyrosine from arogenate; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa) | ||||
prs | Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (311 aa) | ||||
AOH83558.1 | Ribulose phosphate epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (220 aa) | ||||
hisC | Histidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (365 aa) | ||||
AOH86573.1 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (385 aa) | ||||
gpmA | Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (228 aa) | ||||
proA | Gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (421 aa) | ||||
AOH83704.1 | Aspartate aminotransferase; Catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa) | ||||
AOH83836.1 | Phosphoglycerate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate mutase family. (256 aa) | ||||
AOH83853.1 | Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (94 aa) | ||||
AOH83873.1 | Phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (311 aa) | ||||
aroQ | 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (144 aa) | ||||
AOH83899.1 | Thiamine pyrophosphate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (552 aa) | ||||
leuD | 3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (201 aa) | ||||
leuC | Isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (479 aa) | ||||
AOH84002.1 | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (306 aa) | ||||
argD | Acetylornithine aminotransferase; Catalyzes the formation of N-acetyl-l-glutamate 5-semialdehyde from 2-oxoglutarate and N(2)-acetyl-L-ornithine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (397 aa) | ||||
proB | Glutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (368 aa) | ||||
AOH84063.1 | Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (410 aa) | ||||
AOH84126.1 | Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (395 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (349 aa) | ||||
AOH84183.1 | Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa) | ||||
proC | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (270 aa) | ||||
AOH84225.1 | Shikimate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (275 aa) | ||||
dapB | 4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (245 aa) | ||||
AOH86687.1 | Ornithine cyclodeaminase; Catalyzes the formation of L-proline from L-ornithine; Derived by automated computational analysis using gene prediction method: Protein Homology. (357 aa) | ||||
AOH86694.1 | Dihydrodipicolinate synthase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DapA family. (303 aa) | ||||
AOH84385.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (601 aa) | ||||
hisE | phosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (105 aa) | ||||
hisF | Imidazole glycerol phosphate synthase cyclase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (255 aa) | ||||
hisA | 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide isomerase; Catalyzes the formation of 5-(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino-l- (5-hosphoribosyl)imidazole-4-carboxamide from 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa) | ||||
hisH | Imidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (201 aa) | ||||
hisB | Imidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
dapE | Succinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (380 aa) | ||||
AOH84550.1 | Cysteine synthase; CysK; forms a complex with serine acetyltransferase CysE; functions in cysteine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
AOH84604.1 | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (892 aa) | ||||
AOH84612.1 | Threonine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa) | ||||
AOH84761.1 | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (455 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (425 aa) | ||||
AOH84796.1 | Acetylornithine deacetylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (388 aa) | ||||
trpA | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (267 aa) | ||||
trpB | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (409 aa) | ||||
trpF | N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (212 aa) | ||||
aroB | 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (366 aa) | ||||
aroK | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (158 aa) | ||||
AOH84837.1 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (390 aa) | ||||
dapA | 4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (292 aa) | ||||
argC | N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 2 subfamily. (309 aa) | ||||
hisI | phosphoribosyl-AMP cyclohydrolase; Catalyzes the hydrolysis of the adenine ring of phosphoribosyl-AMP. (120 aa) | ||||
AOH84895.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (306 aa) | ||||
AOH84973.1 | Enterotoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (376 aa) | ||||
aroA | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (448 aa) | ||||
AOH85075.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa) | ||||
AOH85116.1 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (408 aa) | ||||
leuD-2 | 3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (204 aa) | ||||
AOH86847.1 | 3-isopropylmalate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (464 aa) | ||||
leuC-2 | Isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (457 aa) | ||||
AOH85197.1 | 3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (196 aa) | ||||
AWL63_16060 | Protocatechuate 3,4-dioxygenase; Extradiol catechol dioxygenase that catalyzes the oxidative cleavage of substituted catechols; part of the bacterial aromatic compound degradation pathway; frameshifted; internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (645 aa) | ||||
AOH85303.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (196 aa) | ||||
AOH85312.1 | Pyridoxal-5'-phosphate-dependent protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (311 aa) | ||||
ilvD | Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (573 aa) | ||||
AOH85353.1 | Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (293 aa) | ||||
AOH85355.1 | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (585 aa) | ||||
AOH85356.1 | Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (171 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (339 aa) | ||||
leuA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (553 aa) | ||||
AOH85378.1 | Asparagine synthetase B; Derived by automated computational analysis using gene prediction method: Protein Homology. (631 aa) | ||||
AOH85388.1 | Diaminopimelate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Orn/Lys/Arg decarboxylase class-II family. (419 aa) | ||||
metAA | Homoserine O-succinyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (307 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (350 aa) | ||||
AOH86899.1 | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (318 aa) | ||||
asd-2 | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (342 aa) | ||||
AOH85808.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (471 aa) | ||||
AOH85925.1 | 5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (342 aa) | ||||
dapF-2 | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (266 aa) | ||||
AOH86078.1 | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (226 aa) | ||||
tpiA | Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (249 aa) | ||||
AOH86088.1 | Anthranilate synthase; With component II, the glutamine amidotransferase, catalyzes the formation of anthranilate from chorismate and glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
AOH86988.1 | Aminodeoxychorismate synthase subunit PabA; with PabB catalyzes the formation of 4-amino-4-deoxychorismate from chorismate and glutamine in para-aminobenzoate synthesis; PabA provides the glutamine amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (194 aa) | ||||
trpD | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (331 aa) | ||||
trpC | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (261 aa) | ||||
gltA | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (427 aa) | ||||
AOH86121.1 | Phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (223 aa) | ||||
argJ | Arginine biosynthesis protein ArgJ; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. Belongs to the ArgJ family. (409 aa) | ||||
dapD | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (274 aa) | ||||
thrB | Homoserine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudomonas-type ThrB family. (319 aa) | ||||
AOH86196.1 | Class I fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (303 aa) | ||||
pgk | Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (397 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (336 aa) | ||||
AOH86220.1 | Phospho-2-dehydro-3-deoxyheptonate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (528 aa) | ||||
glnA | Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa) |