Your Input: | |||||
metF | Methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. (321 aa) | ||||
katA | Catalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (521 aa) | ||||
lpd | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (472 aa) | ||||
sdhC | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
sdhA | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. (689 aa) | ||||
frdB | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (249 aa) | ||||
gpmA | Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (248 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (290 aa) | ||||
ppc_1 | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (882 aa) | ||||
icd | Isocitrate dehydrogenase; NADP-specific, catalyzes the formation of 2-oxoglutarate from isocitrate or oxalosuccinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family. (724 aa) | ||||
cfiB | Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. (1140 aa) | ||||
AIJ32934.1 | acetyl-COA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (580 aa) | ||||
accD5_1 | acyl-CoA carboxylase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (504 aa) | ||||
AIJ32950.1 | methylmalonyl-CoA carboxyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (532 aa) | ||||
accB | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (180 aa) | ||||
accBC2 | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (458 aa) | ||||
serC | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (375 aa) | ||||
gltA | Citrate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (431 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (545 aa) | ||||
gapX | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; involved in growth under gluconeogenic conditions and in glycolytic activity at high ATP concentrations in Corynebacterium; NAD and NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (483 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (325 aa) | ||||
glyA1 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (430 aa) | ||||
aspA | Aspartate ammonia-lyase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (466 aa) | ||||
glpX | Type II fructose 1,6-bisphosphatae; in Escherichia coli this protein forms a dimer and binds manganese; Derived by automated computational analysis using gene prediction method: Protein Homology. (339 aa) | ||||
fdhA | Dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (188 aa) | ||||
fdnH | Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (336 aa) | ||||
pfkA | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. Mixed-substrate PFK group III subfamily. (343 aa) | ||||
serA | 3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (527 aa) | ||||
AIJ33540.1 | 6-phosphogluconate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (497 aa) | ||||
fhs | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (561 aa) | ||||
acnA | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (930 aa) | ||||
AIJ33617.1 | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (693 aa) | ||||
tal | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily. (365 aa) | ||||
zwf | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (507 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (260 aa) | ||||
pgk | Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (405 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (336 aa) | ||||
rpe | Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (222 aa) | ||||
sdaB | Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (465 aa) | ||||
AIJ33707.1 | Polyphosphate glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (247 aa) | ||||
mqo | Malate:quinone oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (498 aa) | ||||
pyk | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa) | ||||
ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (435 aa) | ||||
glk | Glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa) | ||||
aceF | Pyruvate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (694 aa) | ||||
gcvP | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. (944 aa) | ||||
gcvT | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (357 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (130 aa) | ||||
aceE | Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (919 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (424 aa) | ||||
amdA_2 | Formamidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (324 aa) | ||||
rpiB | Catalyzes the interconversion of ribose 5-phosphate to ribulose 5-phosphate; enzyme from E. coli shows allose 6-phosphate isomerase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (157 aa) | ||||
cysK1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (311 aa) | ||||
cysE | Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
scpC | acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (502 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (401 aa) | ||||
eutD | Phosphotransacetylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa) | ||||
fba | Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (344 aa) | ||||
thlA | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (405 aa) |