Your Input: | |||||
cmk | COG0283 Cytidylate kinase. (224 aa) | ||||
rpsA | COG0539 Ribosomal protein S1. (403 aa) | ||||
ylqF | GTP binding protein; Required for a late step of 50S ribosomal subunit assembly. Has GTPase activity; Belongs to the TRAFAC class YlqF/YawG GTPase family. MTG1 subfamily. (279 aa) | ||||
ADZ07165.1 | COG2240 Pyridoxal/pyridoxine/pyridoxamine kinase; Belongs to the pyridoxine kinase family. (273 aa) | ||||
ADZ07177.1 | 2-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (310 aa) | ||||
ADZ07236.1 | COG0561 Predicted hydrolases of the HAD superfamily. (271 aa) | ||||
ADZ07245.1 | COG0634 Hypoxanthine-guanine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (177 aa) | ||||
ribH | 6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (159 aa) | ||||
ppnK-2 | Inorganic polyphosphate/ATP-NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (62 aa) | ||||
ADZ07773.1 | COG3611 Replication initiation/membrane attachment protein. (449 aa) | ||||
ADZ07354.1 | COG1293 Predicted RNA-binding protein homologous to eukaryotic snRNP. (564 aa) | ||||
carB | COG0458 Carbamoylphosphate synthase large subunit (split gene in MJ); Belongs to the CarB family. (1063 aa) | ||||
ADZ07356.1 | COG0505 Carbamoylphosphate synthase small subunit. (351 aa) | ||||
ADZ07368.1 | Initiation of chromosome replication protein; COG3935 Putative primosome component and related proteins. (227 aa) | ||||
asnC | COG0017 Aspartyl/asparaginyl-tRNA synthetases. (432 aa) | ||||
ADZ07380.1 | COG0561 Predicted hydrolases of the HAD superfamily. (263 aa) | ||||
rpoD | RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (370 aa) | ||||
dnaG | DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. (610 aa) | ||||
glyS | COG0751 Glycyl-tRNA synthetase, beta subunit. (687 aa) | ||||
glyQ | COG0752 Glycyl-tRNA synthetase, alpha subunit. (305 aa) | ||||
rpsU | COG0828 Ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (58 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (175 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (612 aa) | ||||
ADZ07516.1 | Riboflavin kinase; COG0196 FAD synthase; Belongs to the ribF family. (309 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (867 aa) | ||||
nusA | Transcription elongation factor NusA; Participates in both transcription termination and antitermination. (395 aa) | ||||
polC | DNA polymerase III, alpha subunit; Required for replicative DNA synthesis. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (1435 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (565 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa) | ||||
tsf | Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (333 aa) | ||||
rpsB | COG0052 Ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (257 aa) | ||||
rplS | 50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (115 aa) | ||||
rpsP | COG0228 Ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (90 aa) | ||||
rpmB | COG0227 Ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (61 aa) | ||||
ADZ07582.1 | COG1564 Thiamine pyrophosphokinase. (228 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (314 aa) | ||||
priA | Primosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (799 aa) | ||||
rpoZ | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (74 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (204 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (283 aa) | ||||
nusB | Transcription termination factor; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (130 aa) | ||||
efp | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa) | ||||
rpmA | COG0211 Ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (96 aa) | ||||
ADZ06196.1 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (376 aa) | ||||
rpsF | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (98 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (78 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (151 aa) | ||||
dnaB | Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity. Belongs to the helicase family. DnaB subfamily. (464 aa) | ||||
ADZ06223.1 | Cobalamin adenosyltransferase; Belongs to the Cob(I)alamin adenosyltransferase family. (187 aa) | ||||
ADZ06237.1 | Hypothetical protein; COG0480 Translation elongation factors (GTPases). (641 aa) | ||||
ADZ06238.1 | Hydrolase; COG0561 Predicted hydrolases of the HAD superfamily. (272 aa) | ||||
ADZ06294.1 | COG1896 Predicted hydrolases of HD superfamily. (214 aa) | ||||
ADZ06315.1 | Ribose-phosphate pyrophosphokinase; COG0462 Phosphoribosylpyrophosphate synthetase. (328 aa) | ||||
nrdG | Anaerobic ribonucleoside-triphosphate reductase activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine. (237 aa) | ||||
ADZ06356.1 | Hypothetical protein. (175 aa) | ||||
ADZ06357.1 | Abortive phage resistance protein; COG1106 Predicted ATPases. (425 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (420 aa) | ||||
ADZ06382.1 | Inosine-5-monophosphate dehydrogenase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. (380 aa) | ||||
trpS | COG0180 Tryptophanyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (340 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (658 aa) | ||||
glmU | Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (461 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (324 aa) | ||||
rpoE | DNA-directed RNA polymerase subunit delta; Participates in both the initiation and recycling phases of transcription. In the presence of the delta subunit, RNAP displays an increased specificity of transcription, a decreased affinity for nucleic acids, and an increased efficiency of RNA synthesis because of enhanced recycling; Belongs to the RpoE family. (185 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (539 aa) | ||||
murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (431 aa) | ||||
xpt | Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (192 aa) | ||||
guaA | GMP synthase; Catalyzes the synthesis of GMP from XMP. (511 aa) | ||||
ADZ06436.1 | Hypothetical protein; COG0561 Predicted hydrolases of the HAD superfamily. (276 aa) | ||||
rpmE2 | COG0254 Ribosomal protein L31. (81 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (185 aa) | ||||
ADZ06451.1 | Ribosomal protein S1; COG1098 Predicted RNA binding protein (contains ribosomal protein S1 domain). (120 aa) | ||||
lysS | COG1190 Lysyl-tRNA synthetase (class II); Belongs to the class-II aminoacyl-tRNA synthetase family. (515 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1213 aa) | ||||
rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1217 aa) | ||||
rpsL | 30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (135 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
fusA | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (697 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (212 aa) | ||||
rplD | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (205 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (101 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (278 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (94 aa) | ||||
rplV | 50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (117 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (224 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (146 aa) | ||||
rpmC | COG0255 Ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (65 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (88 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | 50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (77 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (180 aa) | ||||
rpsN | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (176 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (119 aa) | ||||
rpsE | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (168 aa) | ||||
rpmD | COG1841 Ribosomal protein L30/L7E. (61 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (146 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (218 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (73 aa) | ||||
rpmJ | COG0257 Ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (38 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (116 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (312 aa) | ||||
rplQ | COG0203 Ribosomal protein L17. (127 aa) | ||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (147 aa) | ||||
rpsI | COG0103 Ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (131 aa) | ||||
ADZ06532.1 | dUTPase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. (183 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (499 aa) | ||||
cysS | COG0215 Cysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (474 aa) | ||||
ADZ06538.1 | COG1595 DNA-directed RNA polymerase specialized sigma subunit, sigma24 homolog. (181 aa) | ||||
ADZ06542.1 | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (580 aa) | ||||
rpmG | COG0267 Ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (49 aa) | ||||
nusG | Transcription termination/antitermination factor NusG; Participates in transcription elongation, termination and antitermination. (185 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (230 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (170 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (120 aa) | ||||
dnaX | DNA polymerase III subunits gamma and tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (602 aa) | ||||
tmk | Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (212 aa) | ||||
ADZ06568.1 | DNA polymerase III, delta subunit; COG0470 ATPase involved in DNA replication. (285 aa) | ||||
dinB | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (382 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (879 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (152 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (397 aa) | ||||
ADZ06706.1 | COG0389 Nucleotidyltransferase/DNA polymerase involved in DNA repair. (439 aa) | ||||
ADZ06717.1 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (492 aa) | ||||
nadE | NAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source; Belongs to the NAD synthetase family. (276 aa) | ||||
gatC | aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (102 aa) | ||||
gatA | aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (479 aa) | ||||
gatB | aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa) | ||||
pyrR | Bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (176 aa) | ||||
ADZ06746.1 | COG0561 Predicted hydrolases of the HAD superfamily. (147 aa) | ||||
udk | COG0572 Uridine kinase. (212 aa) | ||||
ADZ06775.1 | Hypothetical protein; COG0561 Predicted hydrolases of the HAD superfamily. (272 aa) | ||||
hpt | COG0634 Hypoxanthine-guanine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (189 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (523 aa) | ||||
ADZ06821.1 | GTP pyrophosphokinase; COG2357 Uncharacterized protein conserved in bacteria. (210 aa) | ||||
ppnK | Inorganic polyphosphate/ATP-NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (266 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (332 aa) | ||||
ADZ06876.1 | HAD family phosphatase; COG0561 Predicted hydrolases of the HAD superfamily. (291 aa) | ||||
dacA | Hypothetical protein; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria. (280 aa) | ||||
ADZ06892.1 | COG0561 Predicted hydrolases of the HAD superfamily. (271 aa) | ||||
ADZ06893.1 | COG0561 Predicted hydrolases of the HAD superfamily. (268 aa) | ||||
rpsZ | 30S ribosomal protein S14A; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
ackA-2 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (394 aa) | ||||
tdk | COG1435 Thymidine kinase. (199 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (362 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (237 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
carB-2 | COG0458 Carbamoylphosphate synthase large subunit (split gene in MJ); Belongs to the CarB family. (1062 aa) | ||||
carA | COG0505 Carbamoylphosphate synthase small subunit; Belongs to the CarA family. (365 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (425 aa) | ||||
pyrB | COG0540 Aspartate carbamoyltransferase, catalytic chain; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (318 aa) | ||||
pyrR-2 | Bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (180 aa) | ||||
pyrD | Dihydroorotate dehydrogenase 1B; Catalyzes the conversion of dihydroorotate to orotate. (307 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (235 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (212 aa) | ||||
ADZ07697.1 | COG2357 Uncharacterized protein conserved in bacteria. (289 aa) | ||||
ADZ07737.1 | COG0212 5-formyltetrahydrofolate cyclo-ligase; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (198 aa) | ||||
rpmG-2 | COG0267 Ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (49 aa) | ||||
pheT | phenylalanyl-tRNA synthetase subunit beta; COG0073 EMAP domain; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (804 aa) | ||||
pheS | COG0016 Phenylalanyl-tRNA synthetase alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (349 aa) | ||||
ADZ07759.1 | Hypothetical protein; COG1713 Predicted HD superfamily hydrolase involved in NAD metabolism. (197 aa) | ||||
nadD | Nicotinate-nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (217 aa) | ||||
ADZ07763.1 | COG1816 Adenosine deaminase. (333 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa) | ||||
rpmI | COG0291 Ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (66 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (644 aa) | ||||
ADZ07766.1 | Translational initiation factor IF3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (147 aa) | ||||
rpmH | COG0230 Ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (46 aa) | ||||
ADZ08194.1 | Hypothetical protein; COG0561 Predicted hydrolases of the HAD superfamily. (266 aa) | ||||
ADZ08193.1 | COG1428 Deoxynucleoside kinases. (228 aa) | ||||
ADZ08192.1 | COG1428 Deoxynucleoside kinases. (215 aa) | ||||
asnA | COG2502 Asparagine synthetase A. (337 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (429 aa) | ||||
purB-2 | COG0015 Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (431 aa) | ||||
ADZ08138.1 | Cobyric acid synthase; COG3442 Predicted glutamine amidotransferase. (228 aa) | ||||
thiD | COG0351 Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase. (272 aa) | ||||
ackA-3 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (392 aa) | ||||
ADZ08059.1 | Hypothetical protein; COG0526 Thiol-disulfide isomerase and thioredoxins. (405 aa) | ||||
ADZ08057.1 | Plantaricin biosynthesis protein PlnO; COG0463 Glycosyltransferases involved in cell wall biogenesis. (402 aa) | ||||
ADZ08019.1 | COG0480 Translation elongation factors (GTPases). (640 aa) | ||||
ADZ07990.1 | COG0194 Guanylate kinase. (182 aa) | ||||
ADZ07951.1 | dTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (138 aa) | ||||
ADZ07934.1 | Haloacid dehalogenase-like hydrolase; COG0561 Predicted hydrolases of the HAD superfamily. (260 aa) | ||||
ADZ07910.1 | Acetyltransferase; COG2153 Predicted acyltransferase. (150 aa) | ||||
coaA | COG1072 Panthothenate kinase. (304 aa) | ||||
efp-2 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (191 aa) | ||||
ADZ07887.1 | COG2176 DNA polymerase III, alpha subunit (gram-positive type). (318 aa) | ||||
purB | COG0015 Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (449 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (435 aa) | ||||
leuS | COG0495 Leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (804 aa) | ||||
ADZ07843.1 | Biotin carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (460 aa) | ||||
accD | Acetyl-coenzyme a carboxylase carboxyl transferase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (281 aa) | ||||
ADZ07841.1 | COG0825 Acetyl-CoA carboxylase alpha subunit. (256 aa) | ||||
ADZ07835.1 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (477 aa) | ||||
argS | COG0018 Arginyl-tRNA synthetase. (561 aa) | ||||
ADZ07807.1 | phenylalanyl-tRNA synthetase; COG0073 EMAP domain; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (215 aa) | ||||
purE | Phosphoribosylaminoimidazole carboxylase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (173 aa) | ||||
purK | Phosphoribosylaminoimidazole carboxylase ATPase subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (362 aa) | ||||
purC | COG0152 Phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase; Belongs to the SAICAR synthetase family. (238 aa) | ||||
purS | Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (84 aa) | ||||
purQ | Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (223 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (742 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (483 aa) | ||||
purM | COG0150 Phosphoribosylaminoimidazole (AIR) synthetase. (345 aa) | ||||
purN | Phosphoribosyl glycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (198 aa) | ||||
purH | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; COG0138 AICAR transformylase/IMP cyclohydrolase PurH (only IMP cyclohydrolase domain in Aful). (513 aa) | ||||
purD | COG0151 Phosphoribosylamine-glycine ligase; Belongs to the GARS family. (419 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. (887 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (200 aa) | ||||
atpE | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (74 aa) | ||||
atpF | F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (169 aa) | ||||
atpH | F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (182 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (503 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (320 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (479 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (146 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (203 aa) | ||||
thiI | Thiamine biosynthesis protein ThiI; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (405 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (879 aa) | ||||
ADZ06960.1 | COG0285 Folylpolyglutamate synthase; Belongs to the folylpolyglutamate synthase family. (423 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (927 aa) | ||||
ADZ06997.1 | Hypothetical protein; COG5503 Uncharacterized conserved small protein; Belongs to the UPF0356 family. (73 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (184 aa) | ||||
typA | GTP-binding protein TypA; COG1217 Predicted membrane GTPase involved in stress response. (614 aa) | ||||
coaD | Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (164 aa) | ||||
ADZ07008.1 | COG1466 DNA polymerase III, delta subunit. (328 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (85 aa) | ||||
rpsO | 30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa) | ||||
tuf | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (318 aa) | ||||
ADZ07062.1 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (168 aa) | ||||
ybaK | Transcription regulator; Belongs to the prolyl-tRNA editing family. YbaK/EbsC subfamily. (169 aa) | ||||
ADZ07090.1 | ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (746 aa) | ||||
hisS | COG0124 Histidyl-tRNA synthetase. (428 aa) | ||||
aspS | aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (605 aa) | ||||
coaBC | Pantothenate metabolism flavoprotein-like protein; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (398 aa) | ||||
ADZ07098.1 | COG0561 Predicted hydrolases of the HAD superfamily. (269 aa) | ||||
rpmF | COG0333 Ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (62 aa) | ||||
ADZ07111.1 | COG0587 DNA polymerase III, alpha subunit. (1035 aa) |