STRINGSTRING
apgM apgM fbp fbp AMD17009.1 AMD17009.1 AMD17575.1 AMD17575.1 AMD17812.1 AMD17812.1 eno eno deoC deoC pgk pgk tpiA tpiA gap gap
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
apgMPhosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (412 aa)
fbpFructose 1,6-bisphosphatase; Catalyzes two subsequent steps in gluconeogenesis: the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3- phosphate (GA3P) to fructose-1,6-bisphosphate (FBP), and the dephosphorylation of FBP to fructose-6-phosphate (F6P). (365 aa)
AMD17009.1D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (524 aa)
AMD17575.1Phosphoglycerate mutase; Catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate; this enzyme does not require the cofactor 2,3-bisphosphoglycerate as a phosphate donor; BPG-independent PGAM; aPGAM; Derived by automated computational analysis using gene prediction method: Protein Homology. (403 aa)
AMD17812.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (467 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (414 aa)
deoCDeoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily. (242 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (404 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (222 aa)
gapGlyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glycerol phosphate from D-glyceraldehyde 3-phosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: medium (46%) [HD]