STRINGSTRING
rplP0 rplP0 rps2 rps2 rpoD rpoD rps11 rps11 rpl15 rpl15 rpl30p rpl30p rps5 rps5 rpl5 rpl5 rps19p rps19p rpl3 rpl3 fusA fusA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplP0Acidic ribosomal protein P0; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (336 aa)
rps230S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (200 aa)
rpoDDNA-directed RNA polymerase subunit D; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (267 aa)
rps1130S ribosomal protein S11; Located on the platform of the 30S subunit. Belongs to the universal ribosomal protein uS11 family. (130 aa)
rpl1550S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (145 aa)
rpl30p50S ribosomal protein L30; L30 binds domain II of the 23S rRNA and the 5S rRNA; similar to eukaryotic protein L7; Derived by automated computational analysis using gene prediction method: Protein Homology. (152 aa)
rps530S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy. (213 aa)
rpl550S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. May contact the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (170 aa)
rps19p30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (136 aa)
rpl350S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (336 aa)
fusAElongation factor EF-2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (732 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: low (34%) [HD]