Your Input: | |||||
AMD16694.1 | DNA mismatch repair protein MutT; Derived by automated computational analysis using gene prediction method: Protein Homology. (134 aa) | ||||
apgM | Phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (412 aa) | ||||
AMD17003.1 | Lactaldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (470 aa) | ||||
atpE | ATP synthase subunit E; Produces ATP from ADP in the presence of a proton gradient across the membrane. (203 aa) | ||||
atpC | ATP synthase subunit C; Produces ATP from ADP in the presence of a proton gradient across the membrane. (384 aa) | ||||
atpF | ATP synthase subunit F; Produces ATP from ADP in the presence of a proton gradient across the membrane. (105 aa) | ||||
atpA | ATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family. (580 aa) | ||||
atpB | ATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal beta chain is a regulatory subunit. (463 aa) | ||||
atpD | ATP synthase subunit D; Produces ATP from ADP in the presence of a proton gradient across the membrane. (228 aa) | ||||
AMD17166.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the complex I 49 kDa subunit family. (374 aa) | ||||
AMD17466.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (139 aa) | ||||
AMD17575.1 | Phosphoglycerate mutase; Catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate; this enzyme does not require the cofactor 2,3-bisphosphoglycerate as a phosphate donor; BPG-independent PGAM; aPGAM; Derived by automated computational analysis using gene prediction method: Protein Homology. (403 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. (150 aa) | ||||
AMD17649.1 | Phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (408 aa) | ||||
AMD17812.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (467 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (414 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (404 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (222 aa) | ||||
gap | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glycerol phosphate from D-glyceraldehyde 3-phosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
AMD18245.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa) | ||||
AMD18246.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa) | ||||
AMD18354.1 | Deoxyribonucleotide triphosphate pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (183 aa) |