STRINGSTRING
atpE atpE atpC atpC atpF atpF atpA atpA atpB atpB atpD atpD AMD17166.1 AMD17166.1 AMD18245.1 AMD18245.1 AMD18246.1 AMD18246.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpEATP synthase subunit E; Produces ATP from ADP in the presence of a proton gradient across the membrane. (203 aa)
atpCATP synthase subunit C; Produces ATP from ADP in the presence of a proton gradient across the membrane. (384 aa)
atpFATP synthase subunit F; Produces ATP from ADP in the presence of a proton gradient across the membrane. (105 aa)
atpAATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family. (580 aa)
atpBATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal beta chain is a regulatory subunit. (463 aa)
atpDATP synthase subunit D; Produces ATP from ADP in the presence of a proton gradient across the membrane. (228 aa)
AMD17166.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the complex I 49 kDa subunit family. (374 aa)
AMD18245.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa)
AMD18246.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: low (20%) [HD]