STRINGSTRING
AMD17115.1 AMD17115.1 gatA gatA purL purL AMD16742.1 AMD16742.1 AMD16826.1 AMD16826.1 AMD16913.1 AMD16913.1 purP purP carA carA carB carB tiaS tiaS guaAB guaAB gatE gatE gatD gatD AMD17315.1 AMD17315.1 AMD17316.1 AMD17316.1 AMD17544.1 AMD17544.1 AMD17566.1 AMD17566.1 AMD18452.1 AMD18452.1 pyrG pyrG AMD17580.1 AMD17580.1 purQ purQ purS purS purC purC AMD17797.1 AMD17797.1 AMD17798.1 AMD17798.1 AMD17811.1 AMD17811.1 purA purA AMD17884.1 AMD17884.1 AMD17987.1 AMD17987.1 queC queC AMD18164.1 AMD18164.1 purM purM AMD18229.1 AMD18229.1 AMD18230.1 AMD18230.1 argG argG gatB gatB nadE nadE cbiA cbiA purD purD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AMD17115.1Carboxylate--amine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa)
gatAglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (456 aa)
purLPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (712 aa)
AMD16742.1Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (451 aa)
AMD16826.1Gamma-glutamyl ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa)
AMD16913.1Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (445 aa)
purP5-formaminoimidazole-4-carboxamide-1-(beta)-D- ribofuranosyl 5'-monophosphate synthetase; Catalyzes the ATP- and formate-dependent formylation of 5- aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (AICAR) to 5-formaminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (FAICAR) in the absence of folates. (363 aa)
carACarbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1058 aa)
tiaSDNA-binding protein; ATP-dependent agmatine transferase that catalyzes the formation of 2-agmatinylcytidine (agm2C) at the wobble position (C34) of tRNA(Ile2), converting the codon specificity from AUG to AUA. (424 aa)
guaABGMP synthase [glutamine-hydrolyzing] subunit B; Catalyzes the synthesis of GMP from XMP. (308 aa)
gatEglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (621 aa)
gatDglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (436 aa)
AMD17315.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AMD17316.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AMD17544.1UDP-N-acetylmuramoylalanine--D-glutamate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa)
AMD17566.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa)
AMD18452.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (226 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (538 aa)
AMD17580.1Asparagine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (481 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (214 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (88 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (242 aa)
AMD17797.1GshA; Derived by automated computational analysis using gene prediction method: Protein Homology. (464 aa)
AMD17798.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa)
AMD17811.1F420-0--gamma-glutamyl ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (339 aa)
AMD17884.1Biofilm PGA synthesis protein PgaB; Derived by automated computational analysis using gene prediction method: Protein Homology. (305 aa)
AMD17987.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (565 aa)
queC7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (225 aa)
AMD18164.1Coenzyme F420:L-glutamate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (339 aa)
AMD18229.1Phosphopantothenoylcysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
AMD18230.1Phosphopantothenoylcysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (170 aa)
argGArgininosuccinate synthase; Catalyzes the formation of 2-N(omega)-(L-arginino)succinate from L-citrulline and L-aspartate in arginine biosynthesis, AMP-forming; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (392 aa)
gatBglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (450 aa)
nadENAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (262 aa)
cbiACobyrinic acid a,c-diamide synthase; Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source. Involved in the biosynthesis of the unique nickel-containing tetrapyrrole coenzyme F430, the prosthetic group of methyl-coenzyme M reductase (MCR), which plays a key role in methanogenesis and anaerobic methane oxidation. Catalyzes the ATP- dependent amidation of the two carboxylate groups at positions a and c of Ni-sirohydrochlorin, using L-glutamine or ammonia as the nitrogen source. (451 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (436 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: low (20%) [HD]