STRINGSTRING
gatA gatA ribK ribK hisG hisG AMD16579.1 AMD16579.1 thiL thiL radA radA ileS ileS purL purL AMD16666.1 AMD16666.1 srp54 srp54 AMD16706.1 AMD16706.1 lysS lysS AMD16720.1 AMD16720.1 AMD16726.1 AMD16726.1 AMD16727.1 AMD16727.1 moaA moaA AMD16742.1 AMD16742.1 AMD16760.1 AMD16760.1 ftsY ftsY mptE mptE AMD16790.1 AMD16790.1 lig lig ftsZ ftsZ alaS alaS thiI thiI AMD16842.1 AMD16842.1 radB radB AMD16861.1 AMD16861.1 AMD16906.1 AMD16906.1 AMD16940.1 AMD16940.1 mutS2 mutS2 tmk tmk tyrS tyrS AMD16952.1 AMD16952.1 purP purP AMD16959.1 AMD16959.1 carA carA carB carB tiaS tiaS atpA atpA AMD17031.1 AMD17031.1 pyrH pyrH dcd dcd AMD17075.1 AMD17075.1 argB argB AMD17115.1 AMD17115.1 pan pan guaAB guaAB gatE gatE gatD gatD AMD17199.1 AMD17199.1 AMD17200.1 AMD17200.1 AMD17207.1 AMD17207.1 AMD17208.1 AMD17208.1 AMD17211.1 AMD17211.1 prs prs uvrB uvrB uvrA uvrA AMD17236.1 AMD17236.1 AMD17237.1 AMD17237.1 cbiO cbiO AMD17277.1 AMD17277.1 AMD17280.1 AMD17280.1 AMD17287.1 AMD17287.1 AMD17315.1 AMD17315.1 AMD17316.1 AMD17316.1 AMD17317.1 AMD17317.1 AMD17318.1 AMD17318.1 glnQ glnQ surE surE AMD17482.1 AMD17482.1 cca cca metG metG cpgS cpgS rad50 rad50 AMD17554.1 AMD17554.1 pyrG pyrG AMD17580.1 AMD17580.1 AMD17583.1 AMD17583.1 AMD17605.1 AMD17605.1 eif2g eif2g infB infB ndk ndk trpS trpS AMD17636.1 AMD17636.1 sucD sucD mobA mobA cysS cysS valS valS pheT pheT proS proS cofC cofC AMD17691.1 AMD17691.1 thiI-2 thiI-2 AMD17731.1 AMD17731.1 purQ purQ purS purS purC purC pheS pheS AMD17793.1 AMD17793.1 AMD17805.1 AMD17805.1 AMD17806.1 AMD17806.1 AMD17807.1 AMD17807.1 purA purA gltX gltX AMD17833.1 AMD17833.1 mvk mvk cmk cmk adkA adkA AMD17883.1 AMD17883.1 coaD coaD pgk2 pgk2 AMD17937.1 AMD17937.1 aroK aroK AMD17950.1 AMD17950.1 AMD17962.1 AMD17962.1 AMD17972.1 AMD17972.1 AMD17973.1 AMD17973.1 AMD17977.1 AMD17977.1 AMD17978.1 AMD17978.1 AMD17987.1 AMD17987.1 AMD17990.1 AMD17990.1 ribL ribL nadK nadK AMD18078.1 AMD18078.1 tuf tuf fusA fusA thiM thiM pgk pgk sucC sucC queC queC top6B top6B top6A top6A AMD18157.1 AMD18157.1 AMD18161.1 AMD18161.1 gch3 gch3 AMD18176.1 AMD18176.1 AMD18185.1 AMD18185.1 purM purM AMD18227.1 AMD18227.1 argG argG nnrD nnrD gatB gatB hisE hisE AMD18487.1 AMD18487.1 dnaK dnaK nadE nadE leuS leuS rfc rfc rfcL rfcL hisS hisS AMD18354.1 AMD18354.1 AMD18355.1 AMD18355.1 thrS thrS cbiA cbiA surE-2 surE-2 purD purD argS argS aspC aspC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gatAglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (456 aa)
ribKRiboflavin kinase; Catalyzes the CTP-dependent phosphorylation of riboflavin (vitamin B2) to form flavin mononucleotide (FMN); Belongs to the archaeal riboflavin kinase family. (124 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily. (286 aa)
AMD16579.1Cell division control protein Cdc6; Involved in regulation of DNA replication. (387 aa)
thiLThiamine monophosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (308 aa)
radADNA repair and recombination protein RadA; Involved in DNA repair and in homologous recombination. Binds and assemble on single-stranded DNA to form a nucleoprotein filament. Hydrolyzes ATP in a ssDNA-dependent manner and promotes DNA strand exchange between homologous DNA molecules. (311 aa)
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1077 aa)
purLPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (712 aa)
AMD16666.1ATP-dependent helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (609 aa)
srp54Signal recognition particle; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (449 aa)
AMD16706.1Ribonucleoside-triphosphate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (772 aa)
lysSlysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (527 aa)
AMD16720.1Iron ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa)
AMD16726.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (569 aa)
AMD16727.1Multidrug ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (593 aa)
moaAMolybdenum cofactor biosynthesis protein MoeA; Catalyzes the cyclization of GTP to (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate; Belongs to the radical SAM superfamily. MoaA family. (309 aa)
AMD16742.1Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (451 aa)
AMD16760.1ATPase AAA; Broad-specificity nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. Belongs to the adenylate kinase family. AK6 subfamily. (181 aa)
ftsYCell division protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (506 aa)
mptE6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; Catalyzes the transfer of diphosphate from ATP to 6- hydroxymethyl-7,8-dihydropterin (6-HMD), leading to 6-hydroxymethyl- 7,8-dihydropterin diphosphate (6-HMDP); Belongs to the archaeal 6-HMPDK family. (239 aa)
AMD16790.1ATPase AAA; Involved in regulation of DNA replication. (372 aa)
ligDNA ligase; DNA ligase that seals nicks in double-stranded DNA during DNA replication, DNA recombination and DNA repair. (552 aa)
ftsZCell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (378 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (899 aa)
thiItRNA sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (384 aa)
AMD16842.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (232 aa)
radBDNA repair protein RadB; Involved in DNA repair and in homologous recombination. May regulate the cleavage reactions of the branch-structured DNA. Has a very weak ATPase activity that is not stimulated by DNA. Binds DNA but does not promote DNA strands exchange. (234 aa)
AMD16861.1ATPase; Originally found to be an inhibitor of the antiviral RNase-L in human cells; contains ABC-type nucleotide binding domains; putatively functions in RNA maturation; Derived by automated computational analysis using gene prediction method: Protein Homology. (592 aa)
AMD16906.1ATP-binding protein; Part of an ABC transporter complex. Responsible for energy coupling to the transport system. (279 aa)
AMD16940.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (496 aa)
mutS2DNA mismatch repair protein MutS; Has ATPase and non-specific DNA-binding activities. Belongs to the DNA mismatch repair MutS family. Archaeal Muts2 subfamily. (641 aa)
tmkThymidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa)
tyrStyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 3 subfamily. (320 aa)
AMD16952.1ATPase AAA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the MCM family. (668 aa)
purP5-formaminoimidazole-4-carboxamide-1-(beta)-D- ribofuranosyl 5'-monophosphate synthetase; Catalyzes the ATP- and formate-dependent formylation of 5- aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (AICAR) to 5-formaminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (FAICAR) in the absence of folates. (363 aa)
AMD16959.1ATP-dependent helicase; Hel112; monomeric form of the enzyme from Sulfolobus shows 3'-5' ATP-dependent helicase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (865 aa)
carACarbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1058 aa)
tiaSDNA-binding protein; ATP-dependent agmatine transferase that catalyzes the formation of 2-agmatinylcytidine (agm2C) at the wobble position (C34) of tRNA(Ile2), converting the codon specificity from AUG to AUA. (424 aa)
atpAATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family. (580 aa)
AMD17031.1ATP-dependent carboligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (225 aa)
dcdDeoxycytidine triphosphate deaminase; Bifunctional enzyme that catalyzes both the deamination of dCTP to dUTP and the hydrolysis of dUTP to dUMP without releasing the toxic dUTP intermediate. (194 aa)
AMD17075.1ABC transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (287 aa)
AMD17115.1Carboxylate--amine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa)
panNucleotidase; ATPase which is responsible for recognizing, binding, unfolding and translocation of substrate proteins into the archaeal 20S proteasome core particle. Is essential for opening the gate of the 20S proteasome via an interaction with its C-terminus, thereby allowing substrate entry and access to the site of proteolysis. Thus, the C- termini of the proteasomal ATPase function like a 'key in a lock' to induce gate opening and therefore regulate proteolysis. Unfolding activity requires energy from ATP hydrolysis, whereas ATP binding alone promotes ATPase-20S proteasome associa [...] (412 aa)
guaABGMP synthase [glutamine-hydrolyzing] subunit B; Catalyzes the synthesis of GMP from XMP. (308 aa)
gatEglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (621 aa)
gatDglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (436 aa)
AMD17199.1Multidrug ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (591 aa)
AMD17200.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (569 aa)
AMD17207.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (596 aa)
AMD17208.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa)
AMD17211.1ABC transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (483 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P). (304 aa)
uvrBExcinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (654 aa)
uvrAExcinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (962 aa)
AMD17236.1DEAD/DEAH box helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (863 aa)
AMD17237.1ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (535 aa)
cbiOCobalt transporter ATP-binding subunit; ATP-binding (A) component of a common energy-coupling factor (ECF) ABC-transporter complex. Unlike classic ABC transporters this ECF transporter provides the energy necessary to transport a number of different substrates. (277 aa)
AMD17277.1DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (2445 aa)
AMD17280.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (568 aa)
AMD17287.1Nitrogenase iron protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NifH/BchL/ChlL family. (264 aa)
AMD17315.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AMD17316.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AMD17317.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (569 aa)
AMD17318.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (570 aa)
glnQSimilar to ATP-binding component of ABC transporters; Derived by automated computational analysis using gene prediction method: Protein Homology. (227 aa)
surEHypothetical protein; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (271 aa)
AMD17482.1ATP-binding protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. (325 aa)
ccatRNA CCA-pyrophosphorylase; Catalyzes the addition and repair of the essential 3'- terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate. (454 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (663 aa)
cpgS2,3-diphosphoglycerate synthetase; Catalyzes the formation of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond at the expense of ATP. (459 aa)
rad50Recombinase RecF; Part of the Rad50/Mre11 complex, which is involved in the early steps of DNA double-strand break (DSB) repair. The complex may facilitate opening of the processed DNA ends to aid in the recruitment of HerA and NurA. Rad50 controls the balance between DNA end bridging and DNA resection via ATP-dependent structural rearrangements of the Rad50/Mre11 complex; Belongs to the SMC family. RAD50 subfamily. (915 aa)
AMD17554.1Nicotinamide-nucleotide adenylyltransferase; Catalyzes the formation of NAD+ from nicotinamide ribonucleotide and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology. (177 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (538 aa)
AMD17580.1Asparagine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (481 aa)
AMD17583.1Multidrug ABC transporter ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (305 aa)
AMD17605.1Multidrug ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (597 aa)
eif2gTranslation initiation factor IF-2 subunit gamma; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EIF2G subfamily. (404 aa)
infBTranslation initiation factor IF-2; Function in general translation initiation by promoting the binding of the formylmethionine-tRNA to ribosomes. Seems to function along with eIF-2. (596 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. (150 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). (365 aa)
AMD17636.1Thermosome subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TCP-1 chaperonin family. (546 aa)
sucDHypothetical protein; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (288 aa)
mobAMolybdopterin-guanine dinucleotide biosynthesis protein MobA; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor. (209 aa)
cysScysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (448 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 2 subfamily. (904 aa)
pheTphenylalanyl-tRNA synthetase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (552 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (467 aa)
cofC2-phospho-L-lactate guanylyltransferase; Guanylyltransferase that catalyzes the activation of phosphoenolpyruvate (PEP) as enolpyruvoyl-2-diphospho-5'-guanosine, via the condensation of PEP with GTP. It is involved in the biosynthesis of coenzyme F420, a hydride carrier cofactor; Belongs to the CofC family. (223 aa)
AMD17691.1Nitrate ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (250 aa)
thiI-2tRNA sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (383 aa)
AMD17731.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (214 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (88 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (242 aa)
pheSphenylalanyl-tRNA synthetase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 2 subfamily. (514 aa)
AMD17793.1acyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (698 aa)
AMD17805.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (424 aa)
AMD17806.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (424 aa)
AMD17807.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (427 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (339 aa)
gltXglutamyl-tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (556 aa)
AMD17833.1Amino acid kinase; Catalyzes the formation of isopentenyl diphosphate (IPP), the building block of all isoprenoids. (266 aa)
mvkMevalonate kinase; Catalyzes the phosphorylation of (R)-mevalonate (MVA) to (R)- mevalonate 5-phosphate (MVAP). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoid compounds such as archaeal membrane lipids; Belongs to the GHMP kinase family. Mevalonate kinase subfamily. (320 aa)
cmkCytidylate kinase; Catalyzes the formation of (d)CDP from ATP and (d)CMP; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa)
adkAAdenylate kinase; Catalyzes the formation of 2 ADP from AMP and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the archaeal adenylate kinase family. (186 aa)
AMD17883.1Pyruvate carboxylase subunit A; Catalyzes the ATP-dependent carboxylation of a covalently attached biotin and the transfer of the carboxyl group to pyruvate forming oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (497 aa)
coaDPhosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the eukaryotic CoaD family. (152 aa)
pgk22-phosphoglycerate kinase; Catalyzes the formation of 2-phospho-D-glyceroyl phosphate from ATP and 2-phospho-D-glycerate; Derived by automated computational analysis using gene prediction method: Protein Homology. (303 aa)
AMD17937.1Thermosome subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TCP-1 chaperonin family. (536 aa)
aroKShikimate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa)
AMD17950.1DEAD/DEAH box helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (691 aa)
AMD17962.1Carboxylate--amine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (362 aa)
AMD17972.1Peptide ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa)
AMD17973.1Nickel ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
AMD17977.1Peptide ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa)
AMD17978.1Nickel ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
AMD17987.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (565 aa)
AMD17990.1Macrolide ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa)
ribLFAD synthase; Catalyzes the transfer of the AMP portion of ATP to flavin mononucleotide (FMN) to produce flavin adenine dinucleotide (FAD) coenzyme. (150 aa)
nadKInorganic polyphosphate kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (619 aa)
AMD18078.1Glutamate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (444 aa)
tufElongation factor 1-alpha; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-Tu/EF-1A subfamily. (413 aa)
fusAElongation factor EF-2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (732 aa)
thiMHydroxyethylthiazole kinase; Catalyzes the phosphorylation of the hydroxyl group of 4- methyl-5-beta-hydroxyethylthiazole (THZ); Belongs to the Thz kinase family. (288 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (404 aa)
sucCsuccinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (372 aa)
queC7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (225 aa)
top6BDNA topoisomerase VI subunit B; Relaxes both positive and negative superturns and exhibits a strong decatenase activity. (567 aa)
top6ADNA topoisomerase VI subunit A; Relaxes both positive and negative superturns and exhibits a strong decatenase activity; Belongs to the TOP6A family. (364 aa)
AMD18157.1ATPase AAA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the AAA ATPase family. (374 aa)
AMD18161.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (533 aa)
gch3GTP cyclohydrolase; Catalyzes the formation of 2-amino-5-formylamino-6- ribofuranosylamino-4(3H)-pyrimidinone ribonucleotide monophosphate and inorganic phosphate from GTP. Also has an independent pyrophosphate phosphohydrolase activity; Belongs to the archaeal-type GTP cyclohydrolase family. (253 aa)
AMD18176.1Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (758 aa)
AMD18185.1ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (251 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (339 aa)
AMD18227.1ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa)
argGArgininosuccinate synthase; Catalyzes the formation of 2-N(omega)-(L-arginino)succinate from L-citrulline and L-aspartate in arginine biosynthesis, AMP-forming; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (392 aa)
nnrDSugar kinase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epimers of [...] (513 aa)
gatBglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (450 aa)
hisEphosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (95 aa)
AMD18487.1Teichoic acid ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa)
dnaKMolecular chaperone DnaK; Acts as a chaperone. (625 aa)
nadENAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (262 aa)
leuSleucyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (951 aa)
rfcReplication factor C small subunit; Part of the RFC clamp loader complex which loads the PCNA sliding clamp onto DNA; Belongs to the activator 1 small subunits family. RfcS subfamily. (315 aa)
rfcLATPase AAA; Part of the RFC clamp loader complex which loads the PCNA sliding clamp onto DNA; Belongs to the activator 1 small subunits family. RfcL subfamily. (506 aa)
hisShistidyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (431 aa)
AMD18354.1Deoxyribonucleotide triphosphate pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (183 aa)
AMD18355.1Serine/threonine protein kinase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is a component of the KEOPS complex that is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. The Kae1 domain likely plays a direct catalytic role in this reaction. The Bud32 domain probably displays kinase activity that regulates Kae1 function. In the N-terminal section; belongs to the KAE1 / TsaD family. (529 aa)
thrSthreonine--tRNA ligase; Catalyzes the formation of threonyl-tRNA(Thr) from threonine and tRNA(Thr); catalyzes a two-step reaction, first charging a threonine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (608 aa)
cbiACobyrinic acid a,c-diamide synthase; Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source. Involved in the biosynthesis of the unique nickel-containing tetrapyrrole coenzyme F430, the prosthetic group of methyl-coenzyme M reductase (MCR), which plays a key role in methanogenesis and anaerobic methane oxidation. Catalyzes the ATP- dependent amidation of the two carboxylate groups at positions a and c of Ni-sirohydrochlorin, using L-glutamine or ammonia as the nitrogen source. (451 aa)
surE-2Stationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (258 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (436 aa)
argSarginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (566 aa)
aspCaspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn). (439 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: low (28%) [HD]