STRINGSTRING
apgM apgM AMD16809.1 AMD16809.1 AMD16819.1 AMD16819.1 fbp fbp AMD16922.1 AMD16922.1 porA porA AMD18423.1 AMD18423.1 AMD16924.1 AMD16924.1 AMD17147.1 AMD17147.1 aroA aroA AMD17575.1 AMD17575.1 AMD18456.1 AMD18456.1 AMD17793.1 AMD17793.1 AMD17812.1 AMD17812.1 eno eno pgk pgk tpiA tpiA AMD18105.1 AMD18105.1 AMD18106.1 AMD18106.1 gap gap AMD18176.1 AMD18176.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
apgMPhosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (412 aa)
AMD16809.1Phosphoglucomutase; Catalyzes the interconversion of alpha-D-mannose 1-phosphate to alpha-D-mannose 6-phosphate and alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphohexose mutase family. (454 aa)
AMD16819.1Pyridine nucleotide-disulfide oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa)
fbpFructose 1,6-bisphosphatase; Catalyzes two subsequent steps in gluconeogenesis: the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3- phosphate (GA3P) to fructose-1,6-bisphosphate (FBP), and the dephosphorylation of FBP to fructose-6-phosphate (F6P). (365 aa)
AMD16922.12-ketoisovalerate ferredoxin oxidoreductase; Catalyzes the coenzyme A-dependent oxidation of 3-methyl-2-oxobutanoate coupled to the reduction of ferredoxin producing S-(2-methylpropanoyl)-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa)
porAPyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa)
AMD18423.1Pyruvate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (80 aa)
AMD16924.1Pyruvate ferredoxin oxidoreductase; Catalyzes the ferredoxin-dependent oxidative decarboxylation of pyruvate to form acetyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa)
AMD17147.1acetyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (554 aa)
aroAFructose-bisphosphate aldolase; Catalyzes a transaldol reaction between 6-deoxy-5- ketofructose 1-phosphate (DKFP) and L-aspartate semialdehyde (ASA) with an elimination of hydroxypyruvaldehyde phosphate to yield 2-amino-3,7- dideoxy-D-threo-hept-6-ulosonate (ADH). Plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. (263 aa)
AMD17575.1Phosphoglycerate mutase; Catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate; this enzyme does not require the cofactor 2,3-bisphosphoglycerate as a phosphate donor; BPG-independent PGAM; aPGAM; Derived by automated computational analysis using gene prediction method: Protein Homology. (403 aa)
AMD18456.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (343 aa)
AMD17793.1acyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (698 aa)
AMD17812.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (467 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (414 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (404 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (222 aa)
AMD18105.12-oxoglutarate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (287 aa)
AMD18106.12-oxoglutarate ferredoxin oxidoreductase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (372 aa)
gapGlyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glycerol phosphate from D-glyceraldehyde 3-phosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa)
AMD18176.1Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (758 aa)
Your Current Organism:
Methanobrevibacter sp. YE315
NCBI taxonomy Id: 1609968
Other names: M. sp. YE315
Server load: low (20%) [HD]