STRINGSTRING
purH purH purD purD pyrD pyrD purK purK purE purE pyrB pyrB AKQ41660.2 AKQ41660.2 AKQ43222.2 AKQ43222.2 pyrE pyrE pyrC pyrC AKQ41940.1 AKQ41940.1 AKQ41941.1 AKQ41941.1 purF purF carB carB carA carA purL purL purC purC purS purS purQ purQ purM purM purN purN
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
purHBifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase. (529 aa)
purDPhosphoribosylamine--glycine ligase; Belongs to the GARS family. (429 aa)
pyrDDihydroorotate oxidase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (387 aa)
purKPhosphoribosylaminoimidazole carboxylase ATPase subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (357 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (160 aa)
pyrBAspartate carbamoyltransferase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (351 aa)
AKQ41660.2Dihydroorotase. (413 aa)
AKQ43222.2Hypothetical protein. (322 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (201 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (345 aa)
AKQ41940.1Orotidine-5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP). (236 aa)
AKQ41941.1Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (437 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (491 aa)
carBCarbamoyl-phosphate synthase, large subunit; Belongs to the CarB family. (1107 aa)
carACarbamoyl phosphate synthase small subunit; Belongs to the CarA family. (395 aa)
purLPhosphoribosylformylglycinamidine synthase subunit II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to [...] (744 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family. (269 aa)
purSPhosphoribosylformylglycinamidine synthase small subunit; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...] (84 aa)
purQPhosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (223 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase. (365 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (319 aa)
Your Current Organism:
Erythrobacter atlanticus
NCBI taxonomy Id: 1648404
Other names: E. atlanticus, Erythrobacter atlanticus Zhuang et al. 2015, Erythrobacter sp. s21-N3, KCTC 42697, MCCC 1A00519, strain s21-N3
Server load: low (22%) [HD]