node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ARQ99864.1 | fmt | CSUIS_0007 | CSUIS_1313 | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.927 |
ARQ99864.1 | folD | CSUIS_0007 | CSUIS_0992 | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.970 |
ARQ99864.1 | glyA | CSUIS_0007 | CSUIS_0762 | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.910 |
ARQ99864.1 | thyX | CSUIS_0007 | CSUIS_1497 | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | Thymidylate synthase, flavin-dependent; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. | 0.910 |
fmt | ARQ99864.1 | CSUIS_1313 | CSUIS_0007 | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | 0.927 |
fmt | folD | CSUIS_1313 | CSUIS_0992 | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.967 |
fmt | glyA | CSUIS_1313 | CSUIS_0762 | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.910 |
fmt | thyX | CSUIS_1313 | CSUIS_1497 | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | Thymidylate synthase, flavin-dependent; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. | 0.910 |
folD | ARQ99864.1 | CSUIS_0992 | CSUIS_0007 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | 0.970 |
folD | fmt | CSUIS_0992 | CSUIS_1313 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.967 |
folD | glyA | CSUIS_0992 | CSUIS_0762 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.980 |
folD | purH | CSUIS_0992 | CSUIS_0311 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | AICAR transformylase / IMP cyclohydrolase; Bifunctional; Pfam matches to PF01808.14 AICARFT_IMPCHas, and to PF02142.18 MGS. | 0.972 |
folD | thyX | CSUIS_0992 | CSUIS_1497 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Thymidylate synthase, flavin-dependent; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. | 0.921 |
glyA | ARQ99864.1 | CSUIS_0762 | CSUIS_0007 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Formyltransferase domain-containing protein; Pfam matches to PF00551.15 Formyl_trans_N, and to PF02911.14 Formyl_trans_C. | 0.910 |
glyA | fmt | CSUIS_0762 | CSUIS_1313 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.910 |
glyA | folD | CSUIS_0762 | CSUIS_0992 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.980 |
glyA | purH | CSUIS_0762 | CSUIS_0311 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | AICAR transformylase / IMP cyclohydrolase; Bifunctional; Pfam matches to PF01808.14 AICARFT_IMPCHas, and to PF02142.18 MGS. | 0.991 |
glyA | thyX | CSUIS_0762 | CSUIS_1497 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | Thymidylate synthase, flavin-dependent; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. | 0.929 |
purH | folD | CSUIS_0311 | CSUIS_0992 | AICAR transformylase / IMP cyclohydrolase; Bifunctional; Pfam matches to PF01808.14 AICARFT_IMPCHas, and to PF02142.18 MGS. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.972 |
purH | glyA | CSUIS_0311 | CSUIS_0762 | AICAR transformylase / IMP cyclohydrolase; Bifunctional; Pfam matches to PF01808.14 AICARFT_IMPCHas, and to PF02142.18 MGS. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.991 |