Your Input: | |||||
KMQ69456.1 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. (955 aa) | ||||
KMQ68842.1 | Deoxynucleoside kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa) | ||||
KMQ68476.1 | Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (116 aa) | ||||
nuoN | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (461 aa) | ||||
KMQ67650.1 | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (497 aa) | ||||
KMQ67651.1 | NADH:ubiquinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (637 aa) | ||||
nuoK | NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (109 aa) | ||||
KMQ67653.1 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (165 aa) | ||||
nuoI | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (185 aa) | ||||
nuoH | NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (354 aa) | ||||
KMQ67656.1 | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (333 aa) | ||||
KMQ67657.1 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (452 aa) | ||||
KMQ67658.1 | NADH-quinone oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology. (169 aa) | ||||
nuoD | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (407 aa) | ||||
KMQ67660.1 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 30 kDa subunit family. (164 aa) | ||||
nuoB | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (186 aa) | ||||
nuoA | NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (123 aa) | ||||
KMQ67326.1 | Semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa) | ||||
KMQ67068.1 | NAD-dependent dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa) |