Your Input: | |||||
dinG | ATP-dependent DNA helicase DinG; DNA-dependent ATPase and 5'-3' DNA helicase. (714 aa) | ||||
KMT57405.1 | DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1173 aa) | ||||
rnhB | Ribonuclease HII; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (210 aa) | ||||
mutS | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. (863 aa) | ||||
KMT57613.1 | DNA polymerase III subunit chi; Derived by automated computational analysis using gene prediction method: Protein Homology. (142 aa) | ||||
ligA | NAD-dependent DNA ligase LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (785 aa) | ||||
dnaX | DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (697 aa) | ||||
KMT56787.1 | ATP-dependent DNA helicase RecQ; Derived by automated computational analysis using gene prediction method: Protein Homology. (708 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (923 aa) | ||||
KMT56547.1 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (367 aa) | ||||
ligB | NAD-dependent DNA ligase LigB; Catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double-stranded DNA using NAD as a coenzyme and as the energy source for the reaction. Belongs to the NAD-dependent DNA ligase family. LigB subfamily. (554 aa) | ||||
rep | ATP-dependent DNA helicase Rep; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3' to 5' direction. (669 aa) | ||||
KMT55329.1 | Chromosome partitioning protein ParA; Derived by automated computational analysis using gene prediction method: Protein Homology. (946 aa) | ||||
KMT55466.1 | DNA polymerase III subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology. (203 aa) | ||||
leuS | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] (868 aa) | ||||
KMT55493.1 | DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa) | ||||
KMT54718.1 | ATP-dependent DNA helicase RecQ; Derived by automated computational analysis using gene prediction method: Protein Homology. (645 aa) | ||||
topA | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] (873 aa) | ||||
KMT54385.1 | Chromosome segregation protein SMC; Derived by automated computational analysis using gene prediction method: Protein Homology. (1212 aa) | ||||
sbcD | Exonuclease SbcD; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. (413 aa) | ||||
KMT54522.1 | Helicase UvrD; Derived by automated computational analysis using gene prediction method: Protein Homology. (817 aa) | ||||
dinB | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (353 aa) | ||||
mutL | DNA mismatch repair protein; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex. (637 aa) | ||||
KMT53308.1 | DNA topoisomerase III; Derived by automated computational analysis using gene prediction method: Protein Homology. (649 aa) | ||||
dnaE2 | DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase. (1023 aa) | ||||
KMT52862.1 | DNA topoisomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa) | ||||
KMT52618.1 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa) | ||||
KMT52497.1 | Has polymerase, DNA-binding and 3'-5' exonuclease activities. In Aeropyrum pernix this protein is sensitive to aphidicolin and stable at 95#C; Derived by automated computational analysis using gene prediction method: Protein Homology. (785 aa) | ||||
rnhA | Ribonuclease H; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (150 aa) | ||||
dnaQ | DNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (248 aa) | ||||
KMT52107.1 | Phage-associated protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (292 aa) |