Your Input: | |||||
KMT54750.1 | N5,N10-methylene tetrahydromethanopterin reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (455 aa) | ||||
leuC | Isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (472 aa) | ||||
leuD | 3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (214 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (306 aa) | ||||
KMT57248.1 | RNA polymerase sigma-H factor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. (193 aa) | ||||
KMT57270.1 | Urea carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1207 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (429 aa) | ||||
accA | acetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (315 aa) | ||||
glpD | Glycerol-3-phosphate dehydrogenase; In Escherichia coli this homodimeric enzyme is expressed under aerobic conditions; anaerobic expression is repressed by the arcAB system; converts sn-glycerol-3-phosphate and ubiquinone-8 to dihydroxy acetone phosphate and ubiquinol-8; associates with the cytoplasmic membrane; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family. (512 aa) | ||||
KMT57613.1 | DNA polymerase III subunit chi; Derived by automated computational analysis using gene prediction method: Protein Homology. (142 aa) | ||||
KMT56660.1 | Nitrate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. (902 aa) | ||||
dnaX | DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (697 aa) | ||||
cobQ | Cobyric acid synthase; Catalyzes amidations at positions B, D, E, and G on adenosylcobyrinic A,C-diamide. NH(2) groups are provided by glutamine, and one molecule of ATP is hydrogenolyzed for each amidation. Belongs to the CobB/CobQ family. CobQ subfamily. (483 aa) | ||||
KMT56851.1 | 3-methylcrotonyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (640 aa) | ||||
KMT56852.1 | enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (255 aa) | ||||
KMT56854.1 | acetyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (538 aa) | ||||
uvrB | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (671 aa) | ||||
KMT56547.1 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (367 aa) | ||||
uvrD | DNA-dependent helicase II; Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand and initiates unwinding most effectively when a single-stranded region is present; involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair; Derived by automated computational analysis using gene prediction method: Protein Homology. (727 aa) | ||||
dnaG | DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. (656 aa) | ||||
KMT56202.1 | Malonate decarboxylase subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology. (256 aa) | ||||
KMT56203.1 | The beta subunit catalyzes the decarboxylation of the malonyl moiety on coenzyme A; Derived by automated computational analysis using gene prediction method: Protein Homology. (280 aa) | ||||
trmB | tRNA (guanine-N7)-methyltransferase; Catalyzes the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA. (241 aa) | ||||
KMT56236.1 | Thiamine biosynthesis protein ThiS; With ThiF, ThiG, and ThiO catalyzes the formation of the thiazole moiety of thiamine pyrophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa) | ||||
guaB | Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (489 aa) | ||||
xseA | Exodeoxyribonuclease; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. (459 aa) | ||||
hscB | Co-chaperone HscB; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family. (173 aa) | ||||
KMT56349.1 | Cytochrome C oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (113 aa) | ||||
KMT56409.1 | Anthranilate 1,2-dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (463 aa) | ||||
KMT56410.1 | Benzene 1,2-dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa) | ||||
kynA | Tryptophan 2,3-dioxygenase; Heme-dependent dioxygenase that catalyzes the oxidative cleavage of the L-tryptophan (L-Trp) pyrrole ring and converts L- tryptophan to N-formyl-L-kynurenine. Catalyzes the oxidative cleavage of the indole moiety. (285 aa) | ||||
recD | Exodeoxyribonuclease V subunit alpha; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...] (689 aa) | ||||
recB | Exodeoxyribonuclease V subunit beta; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and rep [...] (1224 aa) | ||||
recC | Exodeoxyribonuclease V subunit gamma; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...] (1150 aa) | ||||
KMT55841.1 | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (152 aa) | ||||
KMT55842.1 | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (453 aa) | ||||
gltB | Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (1481 aa) | ||||
hslV | ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (176 aa) | ||||
hslU | ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (445 aa) | ||||
KMT55642.1 | Pyruvate carboxylase subunit A; Catalyzes the ATP-dependent carboxylation of a covalently attached biotin and the transfer of the carboxyl group to pyruvate forming oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa) | ||||
recG | ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. (691 aa) | ||||
rpoZ | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (87 aa) | ||||
KMT55738.1 | Phosphopantothenoylcysteine decarboxylase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (402 aa) | ||||
KMT55022.1 | Molybdenum cofactor biosynthesis protein MoaD; Derived by automated computational analysis using gene prediction method: Protein Homology. (80 aa) | ||||
KMT55125.1 | RNA polymerase factor sigma-54; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (497 aa) | ||||
KMT55161.1 | Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (403 aa) | ||||
KMT55206.1 | Thymidine phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (716 aa) | ||||
cysN | Adenylylsulfate kinase; May be the GTPase, regulating ATP sulfurylase activity. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (632 aa) | ||||
cysD | Sulfate adenylyltransferase subunit 2; With CysN catalyzes the formation of adenylylsulfate from sulfate and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology. (305 aa) | ||||
KMT55628.1 | Acetolactate synthase 3 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. (574 aa) | ||||
carA | Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (378 aa) | ||||
KMT55493.1 | DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa) | ||||
KMT55522.1 | Ethanolamine ammonia-lyase; With EutC catalyzes the formation of acetaldehyde and ammonia from ethanolamine; Derived by automated computational analysis using gene prediction method: Protein Homology. (464 aa) | ||||
eutC | Ethanolamine ammonia-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the EutC family. (281 aa) | ||||
xseB | Exodeoxyribonuclease VII small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. (80 aa) | ||||
ribH | 6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin; Belongs to the DMRL synthase family. (158 aa) | ||||
uvrA | Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (944 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (333 aa) | ||||
rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1399 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1357 aa) | ||||
KMT54883.1 | 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (643 aa) | ||||
clpX | Clp protease ATP-binding protein; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. (427 aa) | ||||
aceE | Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa) | ||||
KMT54945.1 | Pyruvate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (344 aa) | ||||
KMT54963.1 | 3-methylcrotonyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (641 aa) | ||||
KMT54964.1 | Catalyzes the hydration of gamma-carboxygeranoyl-CoA to 3-hydroxy-gamma-carboxygeranoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (268 aa) | ||||
KMT54965.1 | methylcrotonoyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (535 aa) | ||||
KMT54973.1 | enoyl-CoA hydratase; Catalyzes the reversible hydration of unsaturated fatty acyl-CoA to beta-hydroxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (263 aa) | ||||
KMT53717.1 | NADH dehydrogenase; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (165 aa) | ||||
KMT54801.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (422 aa) | ||||
KMT54609.1 | Glutamine amidotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (258 aa) | ||||
KMT54636.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (541 aa) | ||||
ku | DNA repair protein; With LigD forms a non-homologous end joining (NHEJ) DNA repair enzyme, which repairs dsDNA breaks with reduced fidelity. Binds linear dsDNA with 5'- and 3'- overhangs but not closed circular dsDNA nor ssDNA. Recruits and stimulates the ligase activity of LigD. Belongs to the prokaryotic Ku family. (279 aa) | ||||
KMT54474.1 | Iron transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (281 aa) | ||||
KMT53871.1 | Ribonucleotide-diphosphate reductase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa) | ||||
gcvP | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (949 aa) | ||||
ruvB | ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (352 aa) | ||||
ruvA | ATP-dependent DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (203 aa) | ||||
ruvC | Crossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (174 aa) | ||||
KMT54033.1 | enoyl-CoA hydratase; Catalyzes the reversible hydration of unsaturated fatty acyl-CoA to beta-hydroxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (249 aa) | ||||
ureB | Urease subunit beta; Ureases catalyze the hydrolysis of urea into ammonia and carbon dioxide; in Helicobacter pylori and Yersinia enterocolitica the ammonia released plays a key role in bacterial survival by neutralizing acids when colonizing the gastric mucosa; the holoenzyme is composed of 3 UreC (alpha) and 3 UreAB (gamma/beta); in Brucella suis the urease encoded by this operon (one of two urease-encoding operons found in its genome) is involved with urease activity, optimum growth, resistance to low-pH killing in-vitro and persistence in-vivo, while the other operon does not seem [...] (102 aa) | ||||
aceE-2 | Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (881 aa) | ||||
KMT54214.1 | Dihydrolipoamide acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (551 aa) | ||||
KMT54303.1 | Alkanesulfonate monooxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (361 aa) | ||||
KMT54345.1 | enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (270 aa) | ||||
KMT54350.1 | Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (892 aa) | ||||
KMT54352.1 | Ribonucleotide-diphosphate reductase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa) | ||||
KMT53615.1 | Monooxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (441 aa) | ||||
KMT53686.1 | Sulfurtransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (130 aa) | ||||
KMT53688.1 | Sulfur relay protein DsrH; Derived by automated computational analysis using gene prediction method: Protein Homology. (92 aa) | ||||
nuoC | NADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (594 aa) | ||||
KMT52335.1 | acetyl-COA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (130 aa) | ||||
KMT52338.1 | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (450 aa) | ||||
KMT52339.1 | acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (142 aa) | ||||
KMT52384.1 | P-hydroxycinnamoyl CoA hydratase/lyase; Catalyzes the conversion of feruloyl-CoA to vanillin and acetyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (276 aa) | ||||
KMT52193.1 | Monooxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa) | ||||
KMT52187.1 | Alkanesulfonate monooxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa) | ||||
KMT52177.1 | Pyruvate dehydrogenase; Catalyzes the formation of acetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (574 aa) | ||||
KMT52417.1 | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa) | ||||
KMT52437.1 | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (619 aa) | ||||
KMT52497.1 | Has polymerase, DNA-binding and 3'-5' exonuclease activities. In Aeropyrum pernix this protein is sensitive to aphidicolin and stable at 95#C; Derived by automated computational analysis using gene prediction method: Protein Homology. (785 aa) | ||||
KMT52680.1 | Ribonucleotide-diphosphate reductase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (119 aa) | ||||
ribH-2 | 6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin; Belongs to the DMRL synthase family. (169 aa) | ||||
KMT52644.1 | Ribonucleotide-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (965 aa) | ||||
KMT52618.1 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa) | ||||
KMT52583.1 | Luciferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
KMT52769.1 | Nitrate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (226 aa) | ||||
narH | Nitrate reductase; With NarGJI catalyzes the reduction of nitrate; the beta subunit is an iron sulfur cluster containing electron transfer subunit; one of 3 nitrate reductases in E. coli and in E. coli is expressed when nitrate levels are high; Derived by automated computational analysis using gene prediction method: Protein Homology. (512 aa) | ||||
narZ | Nitrate reductase; With NarYV catalyzes the reduction of nitrate; the beta subunit is an iron sulfur cluster containing electron transfer subunit; one of 3 nitrate reductases in E. coli; expression of nitrate reductase Z is not dependent on nitrate levels; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1257 aa) | ||||
KMT52948.1 | Carbamoyl-phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (455 aa) | ||||
KMT52943.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (78 aa) | ||||
KMT52942.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa) | ||||
KMT52913.1 | enoyl-CoA hydratase; Catalyzes the reversible hydration of unsaturated fatty acyl-CoA to beta-hydroxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (257 aa) | ||||
KMT52776.1 | Ribonucleotide-diphosphate reductase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (113 aa) | ||||
KMT53038.1 | With DhaL and DhaM forms dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone; DhaK is the dihydroxyacetone binding subunit of the dihydroxyacetone kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (333 aa) | ||||
KMT53037.1 | Dihydroxyacetone kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (215 aa) | ||||
KMT53032.1 | Glucosidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (880 aa) | ||||
KMT53027.1 | Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (839 aa) | ||||
KMT53007.1 | FTR1 family iron permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (279 aa) | ||||
KMT53216.1 | FMN reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (187 aa) | ||||
ssuD-2 | Alkanesulfonate monooxygenase; Catalyzes the desulfonation of aliphatic sulfonates. Belongs to the SsuD family. (380 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (341 aa) | ||||
sucD | succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (293 aa) | ||||
KMT53117.1 | 2-oxoglutarate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (943 aa) | ||||
KMT53113.1 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa) | ||||
KMT53102.1 | Glyoxylate carboligase; Catalyzes the formation of 2-hydroxy-3-oxopropanoate (tartronate semialdehyde) from two molecules of glyoxylate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (591 aa) | ||||
KMT53058.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa) | ||||
uvrC | Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (607 aa) | ||||
KMT53478.1 | Cystathionine gamma-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (631 aa) | ||||
ppk | Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family. (740 aa) | ||||
gcvH-2 | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa) | ||||
KMT53423.1 | NAD(P)H-dependent FMN reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa) | ||||
ssuD | Alkanesulfonate monooxygenase; Catalyzes the desulfonation of aliphatic sulfonates. Belongs to the SsuD family. (382 aa) | ||||
KMT53853.1 | enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family. (261 aa) | ||||
KMT53752.1 | 5,10-methylene tetrahydromethanopterin reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (477 aa) | ||||
KMT53725.1 | NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (510 aa) | ||||
KMT53724.1 | NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (617 aa) | ||||
KMT53718.1 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (451 aa) |