node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
pcbB | pcbF | Pro_1169 | Pro_1288 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.548 |
pcbB | pcbG | Pro_1169 | Pro_0892 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbG; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.565 |
pcbB | pcbH | Pro_1169 | Pro_1174 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbH; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.548 |
pcbB | psaA | Pro_1169 | Pro_1672 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I P700 chlorophyll A apoprotein A1 PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. | 0.948 |
pcbB | psaB | Pro_1169 | Pro_1673 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I P700 chlorophyll A apoprotein A2 PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. | 0.948 |
pcbB | psaC | Pro_1169 | Pro_1767 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I iron-sulfur center subunit VII PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically char [...] | 0.926 |
pcbB | psaD | Pro_1169 | Pro_1733 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction center subunit II PsaD. | 0.871 |
pcbB | psaE | Pro_1169 | Pro_0371 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction centre subunit IV PsaE; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. | 0.809 |
pcbB | psaF | Pro_1169 | Pro_0467 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction centre subunit III precursor (PSI-F); Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | 0.929 |
pcbB | psaI | Pro_1169 | Pro_1678 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I subunit VIII PsaI; May help in the organization of the PsaL subunit; Belongs to the PsaI family. | 0.829 |
pcbB | psaJ | Pro_1169 | Pro_0466 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction centre subunit IX PsaJ; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. | 0.881 |
pcbB | psaK | Pro_1169 | Pro_0929 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction center subunit PsaK. | 0.873 |
pcbB | psaL | Pro_1169 | Pro_1679 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction centre subunit XI PsaL. | 0.954 |
pcbB | psaM | Pro_1169 | Pro_0541 | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I reaction centre subunit XII PsaM. | 0.820 |
pcbF | pcbB | Pro_1288 | Pro_1169 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.548 |
pcbF | pcbG | Pro_1288 | Pro_0892 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbG; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.574 |
pcbF | pcbH | Pro_1288 | Pro_1174 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Chlorophyll a/b binding light harvesting protein PcbH; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | 0.552 |
pcbF | psaA | Pro_1288 | Pro_1672 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I P700 chlorophyll A apoprotein A1 PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. | 0.955 |
pcbF | psaB | Pro_1288 | Pro_1673 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I P700 chlorophyll A apoprotein A2 PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. | 0.955 |
pcbF | psaC | Pro_1288 | Pro_1767 | Chlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. | Photosystem I iron-sulfur center subunit VII PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically char [...] | 0.943 |