STRINGSTRING
psbO psbO psbA psbA ndhH ndhH ndhA ndhA ndhI ndhI ndhE ndhE ycf3 ycf3 psbX psbX por por chlL chlL chlB chlB chlN chlN ccmK/csoS1 ccmK/csoS1 rbcL rbcL rbcS rbcS cccA cccA psbY psbY psb28 psb28 pcbA pcbA por-2 por-2 chlP chlP glpX glpX pcbC pcbC pcbG pcbG chlH chlH petN petN thf1 thf1 psaK psaK acsF acsF psbP psbP petG petG cccA-2 cccA-2 chlI chlI pcbD pcbD pcbB pcbB pcbH pcbH petM petM ycf4 ycf4 psbD psbD psbC psbC pcbF pcbF pcbE pcbE Pro_1494 Pro_1494 psaA psaA psaB psaB psaI psaI psaL psaL psaD psaD Pro_1763 Pro_1763 psaC psaC Pro_1804 Pro_1804 psaM psaM psb27 psb27 psaF psaF psaJ psaJ petC petC petA petA ndhB ndhB psaE psaE petD petD petB petB psbM psbM psbB psbB psbT psbT ppeC ppeC cpeA cpeA cpeB cpeB psbJ psbJ psbL psbL psbF psbF psbE psbE ndhC ndhC ndhK ndhK ndhJ ndhJ chlD chlD psbK psbK psbI psbI psbN psbN psbH psbH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psbOPhotosystem II manganese-stabilizing protein PsbO. (263 aa)
psbAPhotosystem II reaction center D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (360 aa)
ndhHNAD(P)H-quinone oxidoreductase chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (394 aa)
ndhANAD(P)H-quinone oxidoreductase chain 1; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (384 aa)
ndhINAD(P)H-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (219 aa)
ndhENAD(P)H-quinone oxidoreductase chain 4L; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (108 aa)
ycf3TPR-repeat protein; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits; Belongs to the Ycf3 family. (173 aa)
psbXPhotosystem II protein X PsbX; Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II. (55 aa)
porLight dependent protochlorophyllide oxido-reductase; Phototransformation of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). (339 aa)
chlLLight-independent protochlorophyllide reductase iron-sulfur ATP-binding protein; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The L component serves as a unique electron donor to the NB-component of the complex, and binds Mg-ATP. (296 aa)
chlBLight-independent protochlorophyllide reductase subunit B; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex. (530 aa)
chlNLight-independent protochlorophyllide reductase subunit N; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex. (418 aa)
ccmK/csoS1Carboxysome shell peptide, CsoS1; May be involved in the formation of the carboxysome, a polyhedral inclusion where RuBisCO is sequestered. (103 aa)
rbcLRibulose 1,5-bisphosphate carboxylase large subunit; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. Belongs to the RuBisCO large chain family. Type I subfamily. (470 aa)
rbcSRibulose bisphosphate carboxylase small subunit; RbcS. (113 aa)
cccACytochrome C. (128 aa)
psbYPhotosystem II protein Y PsbY; Manganese-binding polypeptide with L-arginine metabolizing enzyme activity. Component of the core of photosystem II. Belongs to the PsbY family. (40 aa)
psb28Photosystem II reaction centre W protein; Psb28; Belongs to the Psb28 family. (117 aa)
pcbAChlorophyll a/b binding light harvesting protein PcbA; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (351 aa)
por-2Light dependent protochlorophyllide oxido-reductase. (334 aa)
chlPGeranylgeranyl hydrogenase ChlP. (447 aa)
glpXFructose-1,6-biphosphatase / Sedoheptulose 1,7-biphosphate phosphatase; Catalyzes the hydrolysis of fructose 1,6-bisphosphate (Fru 1,6-P2) and sedoheptulose 1,7-bisphosphate (Sed 1,7-P2) to fructose 6- phosphate and sedoheptulose 7-phosphate, respectively; Belongs to the FBPase class 2 family. (334 aa)
pcbCChlorophyll a/b binding light harvesting protein PcbC; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (351 aa)
pcbGChlorophyll a/b binding light harvesting protein PcbG; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems I. The Prochlorales pcb genes are not related to higher plant LHCs. (353 aa)
chlHProtoporphyrin IX Mg-chelatase subunit; ChlH. (1337 aa)
petNCytochrome B6-F complex subunit VIII; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (33 aa)
thf1Uncharacterized protein; May be involved in photosynthetic membrane biogenesis. (214 aa)
psaKPhotosystem I reaction center subunit PsaK. (85 aa)
acsFMg-protoporphyrin IX monomethylester aerobic cyclization-like protein; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME); Belongs to the AcsF family. (347 aa)
psbPPhotosystem II protein P PsbP. (185 aa)
petGCytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (39 aa)
cccA-2Cytochrome C. (138 aa)
chlIProtoporphyrin IX Mg-chelatase subunit ChlI; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. (362 aa)
pcbDChlorophyll a/b binding light harvesting protein PcbD; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (361 aa)
pcbBChlorophyll a/b binding light harvesting protein PcbB; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (349 aa)
pcbHChlorophyll a/b binding light harvesting protein PcbH; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (352 aa)
petMCytochrome B6-F complex subunit VII; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (32 aa)
ycf4Photosystem I assembly protein; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (193 aa)
psbDPhotosystem II reaction center D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. (358 aa)
psbCPhotosystem II chlorophyll a-binding protein CP43-like protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (460 aa)
pcbFChlorophyll a/b binding light harvesting protein PcbF; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (354 aa)
pcbEChlorophyll a/b binding light harvesting protein PcbE; The antenna complex functions as a light receptor, it captures and delivers excitation energy to photosystems II and I. The Prochlorales pcb genes are not related to higher plant LHCs. (361 aa)
Pro_1494PsbF-like protein; Unknown. Resembles PsbF, one of the subunits of the photosystem II reaction center. However, it encodes asparagine rather than histidine at the site PsbF uses to bind heme; Belongs to the PsbE/PsbF family. (96 aa)
psaAPhotosystem I P700 chlorophyll A apoprotein A1 PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. (773 aa)
psaBPhotosystem I P700 chlorophyll A apoprotein A2 PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. (747 aa)
psaIPhotosystem I subunit VIII PsaI; May help in the organization of the PsaL subunit; Belongs to the PsaI family. (38 aa)
psaLPhotosystem I reaction centre subunit XI PsaL. (199 aa)
psaDPhotosystem I reaction center subunit II PsaD. (141 aa)
Pro_1763Uncharacterized protein; Conserved in cyanobacteria. (61 aa)
psaCPhotosystem I iron-sulfur center subunit VII PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically char [...] (81 aa)
Pro_1804Membrane protein; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. (65 aa)
psaMPhotosystem I reaction centre subunit XII PsaM. (34 aa)
psb27Photosystem II protein Psb27; Plays a role in the repair and/or biogenesis of the calcium- manganese-oxide cluster on the lumenal face of the thylakoid membrane. Its presence in a photosystem II (PSII) preparation prevents binding of some small extrinsic subunits and thus assembly of calcium-manganese- oxide cluster. (144 aa)
psaFPhotosystem I reaction centre subunit III precursor (PSI-F); Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. (183 aa)
psaJPhotosystem I reaction centre subunit IX PsaJ; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (44 aa)
petCCytochrome b6/f complex subunit; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. Belongs to the Rieske iron-sulfur protein family. (178 aa)
petAApocytochrome F; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (310 aa)
ndhBNAD(P)H-quinone oxidoreductase chain 2; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (524 aa)
psaEPhotosystem I reaction centre subunit IV PsaE; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. (69 aa)
petDCytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa)
petBCytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (218 aa)
psbMPhotosystem II protein M PsbM; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (50 aa)
psbBPhotosystem II chlorophyll a-binding protein CP47-like protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (517 aa)
psbTPhotosystem II reaction center T PsbT; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family. (31 aa)
ppeCPhycoerythrin class III gamma chain; Belongs to the phycobilisome linker protein family. (270 aa)
cpeAPhycoerythrin class III alpha chain CpeA. (155 aa)
cpeBPhycoerythrin class III beta chain CpeB; Green-light absorbing phycoerythrin of unknown function. (182 aa)
psbJPhotosystem II protein J PsbJ; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (65 aa)
psbLPhotosystem II protein L PsbL; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (39 aa)
psbFCytochrome b559 beta chain PsbF; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (48 aa)
psbECytochrome b559 alpha subunit PsbE; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (82 aa)
ndhCNAD(P)H-quinone oxidoreductase chain 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (120 aa)
ndhKNAD(P)H-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (242 aa)
ndhJNAD(P)H-quinone oxidoreductase subunit J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (181 aa)
chlDProtoporphyrin IX Mg-chelatase subunit ChlD; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. (707 aa)
psbKPhotosystem II protein PsbK; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (47 aa)
psbIPhotosystem II protein PsbI; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (42 aa)
psbNPhotosystem II reaction center N protein PsbN; May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (46 aa)
psbHPhotosystem II 10 kDa phosphoprotein PsbH; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (67 aa)
Your Current Organism:
Prochlorococcus marinus CCMP1375
NCBI taxonomy Id: 167539
Other names: P. marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus SS120, Prochlorococcus marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus subsp. marinus str. SS120
Server load: low (16%) [HD]