node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
hpf | rpsA | ASE14_05200 | ASE14_03315 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.944 |
hpf | rpsB | ASE14_05200 | ASE14_04295 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 0.980 |
hpf | rpsC | ASE14_05200 | ASE14_07415 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. | 0.999 |
hpf | rpsE | ASE14_05200 | ASE14_07365 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. | 0.981 |
hpf | rpsG | ASE14_05200 | ASE14_07480 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.980 |
hpf | rpsI | ASE14_05200 | ASE14_07280 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. | 0.999 |
hpf | rpsQ | ASE14_05200 | ASE14_07400 | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. | 0.980 |
rpsA | hpf | ASE14_03315 | ASE14_05200 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 0.944 |
rpsA | rpsB | ASE14_03315 | ASE14_04295 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 0.997 |
rpsA | rpsC | ASE14_03315 | ASE14_07415 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. | 0.979 |
rpsA | rpsE | ASE14_03315 | ASE14_07365 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. | 0.997 |
rpsA | rpsG | ASE14_03315 | ASE14_07480 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.998 |
rpsA | rpsI | ASE14_03315 | ASE14_07280 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. | 0.982 |
rpsA | rpsQ | ASE14_03315 | ASE14_07400 | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. | 0.997 |
rpsB | hpf | ASE14_04295 | ASE14_05200 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | RNA polymerase subunit sigma-54; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. | 0.980 |
rpsB | rpsA | ASE14_04295 | ASE14_03315 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.997 |
rpsB | rpsC | ASE14_04295 | ASE14_07415 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. | 0.999 |
rpsB | rpsE | ASE14_04295 | ASE14_07365 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. | 0.999 |
rpsB | rpsG | ASE14_04295 | ASE14_07480 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.999 |
rpsB | rpsI | ASE14_04295 | ASE14_07280 | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. | 0.999 |