STRINGSTRING
murE murE murF murF murD murD murC murC ddl ddl ANI98822.1 ANI98822.1 mpl mpl queC queC ANI99135.1 ANI99135.1 guaA guaA purA purA ANI99345.1 ANI99345.1 ANJ00716.1 ANJ00716.1 carA carA carB carB pyrG pyrG purL purL tilS tilS ANJ00764.1 ANJ00764.1 nadE nadE ANI99854.1 ANI99854.1 panC panC purD purD ANJ00147.1 ANJ00147.1 ANJ00282.1 ANJ00282.1 ANJ00320.1 ANJ00320.1 argG argG purM purM purK purK purC purC gshB gshB ANJ00548.1 ANJ00548.1 ANJ00577.1 ANJ00577.1 gatB gatB gatA gatA gatC gatC bioD bioD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
murEUDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2, 6-diaminopimelate ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Belongs to the MurCDEF family. MurE subfamily. (516 aa)
murFUDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (480 aa)
murDUDP-N-acetylmuramoylalanine--D-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (540 aa)
murCUDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (478 aa)
ddlD-alanine--D-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (335 aa)
ANI98822.1acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (454 aa)
mplUDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl- meso-diaminopimelate ligase; Reutilizes the intact tripeptide L-alanyl-gamma-D-glutamyl- meso-diaminopimelate by linking it to UDP-N-acetylmuramate. Belongs to the MurCDEF family. Mpl subfamily. (465 aa)
queC7-cyano-7-deazaguanine synthase QueC; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (247 aa)
ANI99135.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (535 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (446 aa)
ANI99345.1Type I glutamate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa)
ANJ00716.1Bifunctional folylpolyglutamate synthase/dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (411 aa)
carACarbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (395 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1087 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (553 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1348 aa)
tilStRNA lysidine(34) synthetase TilS; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (430 aa)
ANJ00764.1A circularly permuted ATPgrasp family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (870 aa)
nadENAD+ synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. (539 aa)
ANI99854.1Cyanophycin synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the MurCDEF family. (856 aa)
panCPantoate--beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (283 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (424 aa)
ANJ00147.1Allophanate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (605 aa)
ANJ00282.1glutamyl-tRNA amidotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa)
ANJ00320.1Phosphopantothenate synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (403 aa)
argGArgininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (410 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (394 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (298 aa)
gshBGlutathione synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic GSH synthase family. (313 aa)
ANJ00548.1biotin--[acetyl-CoA-carboxylase] ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (265 aa)
ANJ00577.15-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (208 aa)
gatBaspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (489 aa)
gatAaspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (505 aa)
gatCasparaginyl/glutamyl-tRNA amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (97 aa)
bioDDethiobiotin synthase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. (239 aa)
Your Current Organism:
Polynucleobacter wuianus
NCBI taxonomy Id: 1743168
Other names: CIP 111100, DSM 24008, P. wuianus, Polynucleobacter sp. QLW-P1FAT50C-4, Polynucleobacter wuianus Hahn et al. 2017, strain QLW-P1FAT50C-4
Server load: low (14%) [HD]