STRINGSTRING
aspS aspS ANJ00548.1 ANJ00548.1 proS proS lysS lysS hisS hisS hisZ hisZ thrS thrS pheS pheS pheT pheT serS serS alaS alaS glyQ glyQ lipB lipB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
aspSaspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (599 aa)
ANJ00548.1biotin--[acetyl-CoA-carboxylase] ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (265 aa)
proSproline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (580 aa)
lysSlysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (518 aa)
hisShistidine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa)
hisZATP phosphoribosyltransferase regulatory subunit; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (386 aa)
thrSthreonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (640 aa)
pheSphenylalanine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (348 aa)
pheTphenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (818 aa)
serSserine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (436 aa)
alaSalanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (874 aa)
glyQglycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (290 aa)
lipBOctanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. (214 aa)
Your Current Organism:
Polynucleobacter wuianus
NCBI taxonomy Id: 1743168
Other names: CIP 111100, DSM 24008, P. wuianus, Polynucleobacter sp. QLW-P1FAT50C-4, Polynucleobacter wuianus Hahn et al. 2017, strain QLW-P1FAT50C-4
Server load: low (10%) [HD]