Your Input: | |||||
atpD-2 | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (461 aa) | ||||
Tel_00125 | Thiamine biosynthesis protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa) | ||||
thiG | Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S. (267 aa) | ||||
Tel_00235 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (198 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (216 aa) | ||||
Tel_00265 | (p)ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (727 aa) | ||||
coaD | Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (161 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (204 aa) | ||||
Tel_00810 | Bifunctional riboflavin kinase/FMN adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (309 aa) | ||||
ispH | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. (308 aa) | ||||
Tel_00950 | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (199 aa) | ||||
Tel_01000 | Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa) | ||||
Tel_01060 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (704 aa) | ||||
Tel_01145 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (357 aa) | ||||
thiL | Hypothetical protein; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (321 aa) | ||||
Tel_01215 | Phosphatidylglycerophosphatase; Lipid phosphatase which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). (162 aa) | ||||
folE2 | GTP cyclohydrolase; Converts GTP to 7,8-dihydroneopterin triphosphate. (264 aa) | ||||
dxs | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (631 aa) | ||||
Tel_01360 | Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (425 aa) | ||||
pyrB | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (328 aa) | ||||
Tel_01410 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (186 aa) | ||||
Tel_01615 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (688 aa) | ||||
Tel_01685 | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (334 aa) | ||||
rpiA | Ribose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (220 aa) | ||||
Tel_01890 | Diacylglycerol kinase; Recycling of diacylglycerol produced during the turnover of membrane phospholipid. (120 aa) | ||||
Tel_01945 | Nucleoside triphosphate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa) | ||||
Tel_01950 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa) | ||||
Tel_01990 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (362 aa) | ||||
purT | Phosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (399 aa) | ||||
Tel_02060 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (740 aa) | ||||
Tel_02090 | Magnesium/cobalt efflux protein; Involved in the transport of magnesium and cobalt ions; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa) | ||||
nadD | Nicotinate-nicotinamide nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (213 aa) | ||||
purE | N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (168 aa) | ||||
purK | Phosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (360 aa) | ||||
pfp | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions. (420 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (423 aa) | ||||
Tel_02390 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (959 aa) | ||||
Tel_02465 | Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa) | ||||
pdxA | 4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP). (330 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (525 aa) | ||||
Tel_02615 | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (447 aa) | ||||
Tel_02690 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (255 aa) | ||||
moaA | Hypothetical protein; Catalyzes the cyclization of GTP to (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate. (334 aa) | ||||
moaC | Cyclic pyranopterin monophosphate synthase accessory protein; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. (159 aa) | ||||
Tel_02710 | Molybdopterin synthase sulfur carrier subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (78 aa) | ||||
Tel_02715 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (161 aa) | ||||
Tel_02720 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (147 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (429 aa) | ||||
lpxL | Hypothetical protein; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)-(lauroyl)-lipid IV(A). (310 aa) | ||||
thiC | Thiamine biosynthesis protein ThiC; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (629 aa) | ||||
Tel_03135 | UDP-2,3-diacylglucosamine hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (269 aa) | ||||
Tel_03230 | ADP-ribose diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
cysQ | 3'(2'),5'-bisphosphate nucleotidase CysQ; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (271 aa) | ||||
Tel_03255 | Hypothetical protein; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. (338 aa) | ||||
zwf | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (469 aa) | ||||
tal | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily. (363 aa) | ||||
Tel_03525 | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (688 aa) | ||||
gmhA | Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. (197 aa) | ||||
lpxC | UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis; Belongs to the LpxC family. (303 aa) | ||||
Tel_03840 | Phosphopantothenoylcysteine decarboxylase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (401 aa) | ||||
dut | Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (151 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (215 aa) | ||||
Tel_03915 | Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (219 aa) | ||||
purC | Phosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1299 aa) | ||||
Tel_04285 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa) | ||||
Tel_04305 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (533 aa) | ||||
Tel_04410 | Deoxyadenosine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (218 aa) | ||||
Tel_04455 | 6-phosphogluconate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (304 aa) | ||||
zwf-2 | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (504 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (544 aa) | ||||
aceE | Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa) | ||||
Tel_04475 | Branched-chain alpha-keto acid dehydrogenase subunit E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (435 aa) | ||||
Tel_04550 | Long-chain fatty acid--CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (215 aa) | ||||
dcd | Deoxycytidine triphosphate deaminase; Catalyzes the deamination of dCTP to dUTP. (188 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (219 aa) | ||||
purM | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (352 aa) | ||||
Tel_04725 | CDP-alcohol phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (188 aa) | ||||
Tel_04740 | Nicotinate-nucleotide pyrophosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (275 aa) | ||||
Tel_04860 | Phosphoribosylpyrophosphate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribose-phosphate pyrophosphokinase family. (289 aa) | ||||
nadA | Quinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (367 aa) | ||||
Tel_04915 | Ni/Fe hydrogenase subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology. (277 aa) | ||||
lpxH | UDP-2,3-diacylglucosamine hydrolase; Hydrolyzes the pyrophosphate bond of UDP-2,3- diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP by catalyzing the attack of water at the alpha-P atom. Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (241 aa) | ||||
folD | Hypothetical protein; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (288 aa) | ||||
nudF | ADP-sugar pyrophosphatase; catalyzes the formation of D-ribose 5-phosphate from ADP-ribose; can also act on ADP-mannose and ADP-glucose; Derived by automated computational analysis using gene prediction method: Protein Homology. (199 aa) | ||||
Tel_05335 | 3',5'-cyclic-nucleotide phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (255 aa) | ||||
fliI | Flagellar protein export ATPase FliI; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (461 aa) | ||||
Tel_05930 | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. (361 aa) | ||||
Tel_06010 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (245 aa) | ||||
Tel_06035 | Alanine--glyoxylate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (393 aa) | ||||
Tel_06135 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (489 aa) | ||||
nadK | Hypothetical protein; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (289 aa) | ||||
carA | Carbamoyl-phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (1076 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (251 aa) | ||||
surE | Stationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (249 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (433 aa) | ||||
Tel_06795 | Alpha-ribazole phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (199 aa) | ||||
nadE | NAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. (538 aa) | ||||
Tel_06950 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (416 aa) | ||||
Tel_07275 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (442 aa) | ||||
Tel_07555 | L-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (536 aa) | ||||
Tel_07895 | Hypothetical protein; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (741 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (238 aa) | ||||
Tel_08050 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (276 aa) | ||||
dxr | 1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (389 aa) | ||||
lpxD | UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; Catalyzes the N-acylation of UDP-3-O-acylglucosamine using 3- hydroxyacyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. Belongs to the transferase hexapeptide repeat family. LpxD subfamily. (337 aa) | ||||
fabZ | beta-hydroxyacyl-ACP dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (154 aa) | ||||
lpxA | UDP-N-acetylglucosamine O-acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (256 aa) | ||||
lpxB | lipid-A-disaccharide synthase; Condensation of UDP-2,3-diacylglucosamine and 2,3- diacylglucosamine-1-phosphate to form lipid A disaccharide, a precursor of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (385 aa) | ||||
accA | acetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (318 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (537 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (427 aa) | ||||
ispD | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). (235 aa) | ||||
ispF | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (159 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (400 aa) | ||||
nnrE | Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...] (491 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (231 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (235 aa) | ||||
Tel_08755 | Hypoxanthine-guanine phosphoribosyltransferase; Catalyzes the salvage synthesis of inosine-5'-monophosphate (IMP) and guanosine-5'-monophosphate (GMP) from the purine bases hypoxanthine and guanine, respectively; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
Tel_08785 | CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (185 aa) | ||||
Tel_09265 | Fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa) | ||||
Tel_09355 | Fructose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa) | ||||
tmk | Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (210 aa) | ||||
plsX | Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (340 aa) | ||||
Tel_09505 | Septum formation inhibitor Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes 7- methyl-GTP (m(7)GTP). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids; Belongs to the Maf family. YceF subfamily. (194 aa) | ||||
pyrD | Dihydroorotate dehydrogenase 2; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (348 aa) | ||||
gpmI | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (517 aa) | ||||
lpxK | Tetraacyldisaccharide 4'-kinase; Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA). (325 aa) | ||||
Tel_09880 | Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (130 aa) | ||||
Tel_09890 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (476 aa) | ||||
Tel_09900 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (393 aa) | ||||
Tel_09945 | CDP-diacylglycerol--serine O-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (251 aa) | ||||
Tel_10200 | Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (455 aa) | ||||
acsA | Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (655 aa) | ||||
guaA | GMP synthetase; Catalyzes the synthesis of GMP from XMP. (525 aa) | ||||
guaB | Inosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (486 aa) | ||||
ispG | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (381 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (141 aa) | ||||
Tel_11090 | Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (266 aa) | ||||
Tel_11700 | Cardiolipin synthase B; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
zwf-3 | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (470 aa) | ||||
porA | Pyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa) | ||||
Tel_12010 | Molybdenum cofactor biosynthesis protein; May be involved in the biosynthesis of molybdopterin. Belongs to the MoaB/Mog family. (176 aa) | ||||
Tel_12015 | Hypothetical protein; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. (407 aa) | ||||
mobA | Hypothetical protein; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor; Belongs to the MobA family. (195 aa) | ||||
tal-2 | Hypothetical protein; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily. (370 aa) | ||||
atpD | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (483 aa) | ||||
Tel_12375 | ATP synthase F0F1 subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology. (131 aa) | ||||
atpB | ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (245 aa) | ||||
atpE | ATP synthase F0F1 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (91 aa) | ||||
atpF | Hypothetical protein; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (252 aa) | ||||
atpA | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (510 aa) | ||||
Tel_12415 | ATP synthase subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology. (297 aa) | ||||
Tel_12855 | Ribose-phosphate pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
Tel_12910 | Damage-inducible protein CinA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (162 aa) | ||||
psd | Phosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (288 aa) | ||||
Tel_13325 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (503 aa) | ||||
accD | Hypothetical protein; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (287 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (351 aa) | ||||
Tel_13530 | Hypothetical protein; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane. (124 aa) | ||||
Tel_13585 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa) | ||||
Tel_13805 | Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (345 aa) | ||||
Tel_13810 | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (484 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (392 aa) | ||||
Tel_13820 | Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (335 aa) | ||||
Tel_13825 | Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (664 aa) | ||||
Tel_14100 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
Tel_14155 | Deoxyguanosinetriphosphate triphosphohydrolase; dGTPase family type 2 subfamily; presumably hydrolyzes dGTP to deoxyguanosine and triphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa) | ||||
Tel_14265 | Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (259 aa) | ||||
thiE | Thiamine-phosphate synthase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family. (216 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (277 aa) | ||||
pgl | Hypothetical protein; Hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate. (244 aa) | ||||
glk | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial glucokinase family. (333 aa) | ||||
atpB-2 | ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (280 aa) | ||||
atpE-2 | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (96 aa) | ||||
atpF-2 | ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
atpH | ATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa) | ||||
atpA-2 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa) | ||||
atpG | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa) | ||||
atpC | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (141 aa) | ||||
glmU | Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (455 aa) | ||||
Tel_14670 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (1262 aa) | ||||
Tel_14935 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa) | ||||
plsY | Acyl-phosphate glycerol 3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (194 aa) | ||||
Tel_15030 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (177 aa) | ||||
ispE | 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. (288 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (313 aa) | ||||
Tel_15675 | acyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (128 aa) | ||||
gpmI-2 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (520 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (334 aa) | ||||
Tel_16190 | Hypothetical protein; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (205 aa) | ||||
Tel_16385 | Ribulose phosphate epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (228 aa) | ||||
Tel_16435 | Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (132 aa) | ||||
coaX | Hypothetical protein; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (250 aa) |