STRINGSTRING
SGUI_1461 SGUI_1461 nuoI nuoI SGUI_2791 SGUI_2791 nuoK-2 nuoK-2 SGUI_2793 SGUI_2793 SGUI_2794 SGUI_2794 nuoN-2 nuoN-2 SGUI_2811 SGUI_2811 nuoB-2 nuoB-2 SGUI_2824 SGUI_2824 nuoH-2 nuoH-2 SGUI_2827 SGUI_2827 SGUI_2828 SGUI_2828 nuoK-3 nuoK-3 SGUI_2830 SGUI_2830 SGUI_2831 SGUI_2831 SGUI_2832 SGUI_2832 SGUI_1515 SGUI_1515 SGUI_1920 SGUI_1920 SGUI_2107 SGUI_2107 SGUI_2109 SGUI_2109 SGUI_2110 SGUI_2110 nuoK nuoK SGUI_2112 SGUI_2112 SGUI_2113 SGUI_2113 nuoN nuoN SGUI_2238 SGUI_2238 nuoA nuoA nuoB nuoB nuoC nuoC nuoD nuoD SGUI_2787 SGUI_2787 SGUI_2788 SGUI_2788 nuoH nuoH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SGUI_1461NADH-ubiquinone oxidoreductase chain D; Belongs to the complex I 49 kDa subunit family. (389 aa)
nuoINADH-ubiquinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (238 aa)
SGUI_2791NADH-ubiquinone oxidoreductase chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (297 aa)
nuoK-2NADH-ubiquinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (99 aa)
SGUI_2793NADH-ubiquinone oxidoreductase chain L. (658 aa)
SGUI_2794NADH-ubiquinone oxidoreductase chain M. (521 aa)
nuoN-2NADH-ubiquinone oxidoreductase chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (514 aa)
SGUI_2811NADH ubiquinone oxidoreductase chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (118 aa)
nuoB-2NADH-ubiquinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (182 aa)
SGUI_2824NADH-ubiquinone oxidoreductase chain C. (200 aa)
nuoH-2NADH-ubiquinone oxidoreductase chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (324 aa)
SGUI_2827NADH-ubiquinone oxidoreductase chain I. (152 aa)
SGUI_2828NADH-ubiquinone oxidoreductase chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (186 aa)
nuoK-3NADH-ubiquinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (111 aa)
SGUI_2830NADH-ubiquinone oxidoreductase chain L. (673 aa)
SGUI_2831NADH-ubiquinone oxidoreductase chain M. (535 aa)
SGUI_2832NADH-ubiquinone oxidoreductase chain N. (525 aa)
SGUI_1515Na(+) H(+) antiporter subunit D. (505 aa)
SGUI_1920Na(+) H(+) antiporter subunit D. (517 aa)
SGUI_2107NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (96 aa)
SGUI_2109NADH-ubiquinone oxidoreductase chain H. (325 aa)
SGUI_2110NAD(P)H-quinone oxidoreductase chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (192 aa)
nuoKNADH-ubiquinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
SGUI_2112NADH-ubiquinone oxidoreductase chain L. (645 aa)
SGUI_2113NADH-ubiquinone oxidoreductase chain M. (496 aa)
nuoNNADH-ubiquinone oxidoreductase chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (469 aa)
SGUI_2238NAD-dependent formate dehydrogenase beta subunit. (513 aa)
nuoANADH ubiquinone oxidoreductase chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (121 aa)
nuoBNADH-ubiquinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (184 aa)
nuoCNADH-ubiquinone oxidoreductase chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (286 aa)
nuoDNADH-ubiquinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (467 aa)
SGUI_2787NADH-ubiquinone oxidoreductase chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (437 aa)
SGUI_2788NADH-ubiquinone oxidoreductase chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (844 aa)
nuoHNADH-ubiquinone oxidoreductase chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (477 aa)
Your Current Organism:
Serinicoccus sp. JLT9
NCBI taxonomy Id: 1758689
Other names: S. sp. JLT9
Server load: low (14%) [HD]