STRINGSTRING
SGUI_1461 SGUI_1461 SGUI_2237 SGUI_2237 SGUI_2238 SGUI_2238 nuoC nuoC nuoD nuoD SGUI_2786 SGUI_2786 SGUI_2787 SGUI_2787 SGUI_2788 SGUI_2788 nuoI nuoI SGUI_2824 SGUI_2824 SGUI_2827 SGUI_2827
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SGUI_1461NADH-ubiquinone oxidoreductase chain D; Belongs to the complex I 49 kDa subunit family. (389 aa)
SGUI_2237NAD-dependent formate dehydrogenase gamma subunit. (160 aa)
SGUI_2238NAD-dependent formate dehydrogenase beta subunit. (513 aa)
nuoCNADH-ubiquinone oxidoreductase chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (286 aa)
nuoDNADH-ubiquinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (467 aa)
SGUI_2786NADH-ubiquinone oxidoreductase chain E. (315 aa)
SGUI_2787NADH-ubiquinone oxidoreductase chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (437 aa)
SGUI_2788NADH-ubiquinone oxidoreductase chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (844 aa)
nuoINADH-ubiquinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (238 aa)
SGUI_2824NADH-ubiquinone oxidoreductase chain C. (200 aa)
SGUI_2827NADH-ubiquinone oxidoreductase chain I. (152 aa)
Your Current Organism:
Serinicoccus sp. JLT9
NCBI taxonomy Id: 1758689
Other names: S. sp. JLT9
Server load: low (30%) [HD]