STRINGSTRING
radA radA uvrB uvrB uvrC uvrC recO recO xseB xseB polA polA OHC10618.1 OHC10618.1 OHC10664.1 OHC10664.1 recX recX recA recA dusB dusB ruvC ruvC ruvA ruvA ruvB ruvB uvrA uvrA xseA xseA recR recR OHC09370.1 OHC09370.1 OHC09416.1 OHC09416.1 mfd mfd OHC09185.1 OHC09185.1 OHC09189.1 OHC09189.1 OHC09982.1 OHC09982.1 OHC10064.1 OHC10064.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
radADNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (454 aa)
uvrBExcinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (692 aa)
uvrCExcinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (646 aa)
recODNA repair protein RecO; Involved in DNA repair and RecF pathway recombination. (244 aa)
xseBExodeoxyribonuclease VII small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. (77 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (942 aa)
OHC10618.1DNA helicase II; Derived by automated computational analysis using gene prediction method: Protein Homology. (795 aa)
OHC10664.1DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. (556 aa)
recXRecX family transcriptional regulator; Modulates RecA activity; Belongs to the RecX family. (178 aa)
recARecombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (360 aa)
dusBtRNA dihydrouridine synthase DusB; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. DusB subfamily. (338 aa)
ruvCCrossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (173 aa)
ruvAHolliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (194 aa)
ruvBHolliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (356 aa)
uvrAExcinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (962 aa)
xseAExodeoxyribonuclease VII large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. (403 aa)
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (207 aa)
OHC09370.1Nucleoid-associated protein, YbaB/EbfC family; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection. (107 aa)
OHC09416.1DNA helicase UvrD; Derived by automated computational analysis using gene prediction method: Protein Homology. (1158 aa)
mfdTranscription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1184 aa)
OHC09185.1DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (371 aa)
OHC09189.1DNA topoisomerase III; Decatenates replicating daughter chromosomes; Derived by automated computational analysis using gene prediction method: Protein Homology. (892 aa)
OHC09982.1TIGR02391 family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (558 aa)
OHC10064.1DNA topoisomerase I; Derived by automated computational analysis using gene prediction method: Protein Homology. (441 aa)
Your Current Organism:
Polynucleobacter sp. GWA24521
NCBI taxonomy Id: 1801989
Other names: P. sp. GWA2_45_21, Polynucleobacter sp. GWA2_45_21
Server load: low (26%) [HD]